Skip to main content
Log in

β-Cyclodextrin-containing pseudorotaxanes as building blocks for cross-linked polymers

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Rotaxanes and pseudorotaxanes are the supramolecular objects that attract much attention due to their low toxicity, sliding, dethreading and easy modification. Thus, polyrotaxanes and polypseudorotaxanes can be considered as components in drug delivery systems, sensor devices, implants, contrasting agents, fluorescent probes in other diagnostic systems. Therefore, we have prepared the pseudorotaxanes based on the β-cyclodextrin (β-CD) and molecule-“guest”—polyoxypropylenedimethacrylate (POPDMA) as carrier of end-capped methacrylate groups. The presence of such groups allows pseudorotaxane to be co-polymerized with acrylamide and methylene-bis-acrylamide and to develop cross-linked polymer matrices, which implies their further investigation as systems for a drug release. The structure of these substances was confirmed by FTIR- and NMR-spectroscopy, differential scanning calorimetry (DSC), X-ray analysis [wide-angle X-ray scattering (WAXS)], pyrolysis mass spectrometry. The ratio of POPDMA to β-CD was found to be 1:3, according to NMR data. The interactions between β-CD and POPDMA in the aqueous solution and in the dry mechanical mixture are entirely different, due to formation of pseudorotaxane. The results obtained by pyrolysis mass-spectrometry, WAXS and DSC well correlate with mechanism of formation of inclusion complexes, involving a linear molecule and cyclodextrins as described earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

β-CD:

β-Cyclodextrin

MW:

Molecular weight

MetA:

Methacrylic anhydride

PPG:

Polyoxypropylene glycol

ТЕА:

Triethylamine

POPDMA:

Polyoxypropylenedimethacrylate

WAXS:

Wide angle X-ray scattering

DSC:

Differential scanning calorimetry

TGA:

Thermogravimetric analysis

References

  1. Mattia, E., Otto, S.: Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015)

    Article  CAS  Google Scholar 

  2. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  Google Scholar 

  3. Harada, A., Okada, M., Li, J., Kamachi, M.: Preparation and characterization of inclusion complexes of poly(propy1ene glycol) with cyclodextrins. Macromolecules 28, 8406–8411 (1995)

    Article  CAS  Google Scholar 

  4. Lehn, J.-M.: Supramolecular Chemistry: Concepts and Perspectives, p. 353. Wiley, Hoboken (2011)

    Google Scholar 

  5. Girek, T.: Cyclodextrin-based rotaxanes. J. Incl. Phenom. Macrocycl. Chem. 74, 1–21 (2012)

    Article  CAS  Google Scholar 

  6. Harada, А, Hashidzume, А, Takashima, Y.: Cyclodextrin-based supramolecular polymers. Adv. Polym. Sci. 201, 1–43 (2006)

    Article  CAS  Google Scholar 

  7. Zhanga, J., Mab, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug. Deliv. Rev. 65, 1–39 (2013)

    Article  Google Scholar 

  8. Harada, A., Li, j, Kamachi, M.: Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature 370, 126–128 (1994)

    Article  CAS  Google Scholar 

  9. Yui, N., Katoono, R., Yamashita, A.: Functional cyclodextrin polyrotaxanes for drug delivery. Adv. Polym. Sci. 222, 55–77 (2009)

    Article  CAS  Google Scholar 

  10. Panova, I.G.. Topchieva, I.N.: Rotaxanes and polyrotaxanes. Their synthesis and the supramolecular devices based on them. Russ. Chem. Rev. 70, 28–51 (2001) (in Russian)

    Article  Google Scholar 

  11. Sliwa, W., Girek, T.: Cyclodextrins: Properties and Applications. Wiley-VCH, Weinheim (2017)

    Book  Google Scholar 

  12. Manakker, F., Vermonden, T., Nostrum, C.F., Hennink, W.E.: Cyclodextrin-based polymeric materials: synthesis, properties and pharmaceutical/biomedical applications. Am. Chem. Soc. 10, 3157–3175 (2009)

    Google Scholar 

  13. Harada, A., Hashidzume, A., Yamaguchi, H., Takashima, Y.: Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009)

    Article  CAS  Google Scholar 

  14. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery. AAPS PharmSciTech 6, 329–357 (2005)

    Article  Google Scholar 

  15. Otero-Espinar, F.J., Torres-Labandeira, J.J., Alvarez-Lorenzo, C., Blanco-Mundez, J.: Cyclodextrins in drug delivery systems. J. Drug Deliv. Sci. Technol. 20, 289–301 (2010)

    Article  CAS  Google Scholar 

  16. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  17. Li, J.J., Zhao, F., Li, J.: Polyrotaxanes for applications in life science and biotechnology. Appl. Microbiol. Biotechnol. 90, 427–443 (2011)

    Article  CAS  Google Scholar 

  18. Wenz, G., Han, B.H., Muller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  Google Scholar 

  19. Zheng, Y., Wyman, I.: Supramolecular nanostructures based on cyclodextrin and poly(ethylene oxide): syntheses, structural characterizations and applications for drug delivery. Polymers 8, 190–198 (2016)

    Article  Google Scholar 

  20. Ohga, K., Takashima, Y., Takahashi, H., Kawaguchi, Y., Yamaguchi, H., Harada, A.: Preparation of supramolecular polymers from a cyclodextrin dimer and ditopic guest molecules: control of structure by linker flexibility. Macromolecules 38, 5897–5904 (2005)

    Article  CAS  Google Scholar 

  21. Harada, A., Li, J., Nakamitsu, T., Kamachi, M.: Preparation and characterization of polyrotaxanes containing many threaded α-cyclodextrins. J. Org. Chem. 58, 7524–7528 (1993)

    Article  CAS  Google Scholar 

  22. Joung, Y.K., Park, H.D., Yui, N., Park, K.D.: Supramolecular structures with cyclodextrins for biomedical applications. Biomater. Res. 11, 162–169 (2007)

    Google Scholar 

  23. Pozuelo, J., Mendicuti, F., Mattice, W.L.: Inclusion complexes of chain molecules with cycloamyloses III. molecular dynamics simulations of polyrotaxanes formed by poly(propylene glycol) and β-cyclodextrins. Polym. J. 30, 479–484 (1998)

    Article  CAS  Google Scholar 

  24. Riabov, S.V., Boyko, V.V., Bortnytskyy, V.I., Dmytriyeva, T.V., Kobrina, L.V., Kercha, Y.Y.: Mass-spectrometric studies of inclusion complexes of silylation derivative of β-cyclodextrin with organic compounds obtained in the aqueous environment. Ukr. Chem. J. 75, 58–63 (2009) (in Ukrainian)

    Google Scholar 

  25. Goodacre, R., Kell, D.B.: Pyrolysis mass spectrometry and its applications in biotechnology. Curr. Opin. Biotechnol. 7, 20–28 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LO was engaged in the synthesis of samples and their identification by NMR spectroscopy. LK performed studying of samples by DSC and TGA. SS elaborated and provided synthetic procedures for monomers and cross-linked polymers. VB carried out pyrolysis mass spectrometry research VD studied the samples by WAXS method and analyzed the data obtained. SR took part in the FT-IR, DCS and TGA investigations, summarized all data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Valeriy Demchenko or Sergii Riabov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 780 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orel, L., Kobrina, L., Sinelnikov, S. et al. β-Cyclodextrin-containing pseudorotaxanes as building blocks for cross-linked polymers. J Incl Phenom Macrocycl Chem 92, 273–280 (2018). https://doi.org/10.1007/s10847-018-0838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0838-5

Keywords

Navigation