Skip to main content
Log in

Gold nanoparticles, capped by carboxy-calix[4]resorcinarenes: effect of structure and concentration of macrocycles on the nanoparticles size and aggregation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Small (dcore ≈ 2–5 nm) well-dispersed gold nanoparticles (AuNPs) stabilized by amphiphilic octacarboxy-calix[4]resorcinarenes with different substituents on the lower rim—methyl (С1–CR), pentyl (С5CR) and undecyl (С11CR)—in an aqueous solution were obtained. The nanoparticles were studied by spectrophotometry, transmission electron microscopy, FTIR-spectroscopy, dynamic light scattering, small angle X-ray scattering and X-ray powder diffraction. The influence of HAuCl4/macrocycle ratio during the synthesis on the nanoparticles size and aggregation only for weakly associated С1CR and С5CR was achieved. The self-association effect of С11CR on the nanoparticles stabilization is found. The existence of gold in the form of crystallites and their average sizes were defined. The average nanoparticle sizes were determined and the structure of macrocyclic shells on the surface of nanoparticles in an aqueous solution was proposed. The formation of cooperative calix[4]resorcinarene associates on the AuNPs surface due to the multiple supramolecular interactions leads to the creation of functional gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Alex, S., Tiwari, A.: Functionalized gold nanoparticles: synthesis, properties and applications: a review. J. Nanosci. Nanotechnol. 15, 1869–1894 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Daraee, H., Eatemadi, A., Abbasi, E., Aval, S.F., Kouhi, M., Akbarzadeh, A.: Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 44(1), 410–422 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Thompson, D.T.: Using gold nanoparticles for catalysis. Nano Today 2(4), 40–43 (2007)

    Article  Google Scholar 

  5. Saha, K., Agasti, S.S., Kim, Ch, Li, X., Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turkevitch, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  7. Frens, G.: Controlled nucleation for the regulation of the particle size in mono-disperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973)

    Article  CAS  Google Scholar 

  8. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994)

    Article  Google Scholar 

  9. Sau, T.K., Murphy, C.J.: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Shipway, A.N., Lahav, M., Gabai, R., Willner, I.: Investigations into the electrostatically induced aggregation of Au nanoparticles. Langmuir 16, 8789–8795 (2000)

    Article  CAS  Google Scholar 

  11. Mondal, B., Kamatham, N., Samanta, Sh.R., Jagadesan, P., He, J., Ramamurthy, V.: Synthesis, characterization, guest inclusion, and photophysical studies of gold nanoparticles stabilized with carboxylic acid groups of organic cavitands. Langmuir 29, 12703–12709 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Sau, T.K., Murphy, C.J.: Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923–2929 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Vanegas, Ju.P., Scaiano, Ju.C., Lanterna, A.E.: Thiol-stabilized gold nanoparticles: new ways to displace thiol layers using yttrium or lanthanide chlorides. Langmuir 33(43), 12149–12154 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Weare, W.W., Reed, S.M., Warner, M.G., Hutchison, J.E.: Improved synthesis of small (d CORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 122(51), 12890–12891 (2000)

    Article  CAS  Google Scholar 

  15. Casal-Dujat, Lu, Rodrigues, M., Yague, A., Calpena, A.C., Amabilino, D.B., Gonzalez-Linares, J., Borras, M., Perez-García, L.: Imidazolium amphiphiles for the synthesis, stabilization and drug delivery from gold nanoparticles. Langmuir 28, 2368–2381 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Ghorban, M., Hamishehkar, H.: Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: a novel platform for targeting of anticancer agent. Mater. Sci. Eng. C81, 561–570 (2017)

    Article  CAS  Google Scholar 

  17. Choudhary, B.C., Paul, D., Gupta, T., Tetgure, S.R., Garole, V.J., Borse, A.U., Garole, D.J.: Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J. Environ. Sci. 55, 236–246 (2017)

    Article  Google Scholar 

  18. Rogowski, J.L., Verma, M.S., Gu, F.X.: Discrimination of proteins using an array of surfactant-stabilized gold nanoparticles. Langmuir 32, 7621–7629 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Martin Del Valle, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)

    Article  CAS  Google Scholar 

  20. Ogoshi, T., Yamagishi, T., Nakamoto, Y.: Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 116(14), 7937–8002 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. Wan, X., Tan, L.L., Li, X., Song, N., Li, Z., Hu, J.N., Cheng, Y.M., Wang, Y., Yang, Y.W.: Smart mesoporous silica nanoparticles gated by pillararene-modified gold nanoparticles for on-demand cargo release. Chem. Commun. 52, 13775–13778 (2016)

    Article  CAS  Google Scholar 

  22. Li, H., Chen, D.-X., Sun, Y.-L., Zheng, Y.B., Tan, L.-L., Weiss, P.S., Yang, Y.-W.: Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J. Am. Chem. Soc. 135, 1570–1576 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Nimsea, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42, 366–386 (2013)

    Article  Google Scholar 

  24. Jain, V.K., Kanaiya, P.H.: Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 80, 75–102 (2011)

    Article  CAS  Google Scholar 

  25. Martin-Trasanco, R., Cao, R., Esparza-Ponce, H.E., García-Pupo, L., Montero-Cabrera, M.E.: Small, stable and biocompatible gold nanoparticles capped with a b-cyclodextrin polymer. RSC Adv. 5, 98440–98446 (2015)

    Article  CAS  Google Scholar 

  26. Montes-Garca, V., Fernndez-Lpez, C., Gmez, B., Prez-Juste, I., Garca-Ro, L., Liz-Marzan, L.M., Prez-Juste, J., Pastoriza-Santos, I.: Pillar[5]arene-mediated synthesis of gold nanoparticles: size control and sensing capabilities. Chem. Eur. J. 20, 8404–8409 (2014)

    Article  CAS  Google Scholar 

  27. Kongor, A.R., Mehta, V.A., Modi, K.M., Panchal, M.K., Dey, S.A., Panchal, U.S., Jain, V.K.: Calix-based nanoparticles: a review. Top. Curr. Chem. 374, 28 (2016)

    Article  CAS  Google Scholar 

  28. Li, H., Yang, Y.-W.: Gold nanoparticles functionalized with supramolecular macrocycles: а review. Chin. Chem. Lett. 24, 545–552 (2013)

    Article  CAS  Google Scholar 

  29. Montes-Garca, V., PrezJuste, J., Pastoriza-Santos, I., Liz-Marzan, L.M.: Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem. Eur. J. 20, 10874–10883 (2014)

    Article  CAS  Google Scholar 

  30. Syakaev, V.V., Kazakova, E.K., Morozova, J.E., Shalaeva, Y.V., Latypov, S.K., Konovalov, A.I.: Guest controlled aggregation of amphiphilic sulfonatomethylated calix[4]resorcinarenes in aqueous solutions. J. Colloid Interface Sci. 370, 19–26 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Kazakova, E., Morozova, Ju, Mironova, D., Syakaev, V., Muslinkina, L., Konovalov, A.: Influence of amidoammonium calix[4]resorcinarenes on methyl orange protolytic equilibrium: supramolecular indicator systems. Supramol. Chem. 25(12), 831–841 (2013)

    Article  CAS  Google Scholar 

  32. Shalaeva, Y.V., Morozova, J.E., Ermakova, A.M., Nizameev, I.R., Kadirov, M.K., Kazakova, E.K., Konovalov, A.I.: One-step synthesis of gold colloids using amidoamino-calix[4]resorcinarenes as reducing and stabilizing agents. Investigation of naproxen binding. Colloids Surf. A 527, 1–10 (2017)

    Article  CAS  Google Scholar 

  33. Mironova, D., Muslinkina, L., Syakaev, V., Morozova, J., Yanilkin, V., Konovalov, A., Kazakova, E.: Crystal violet dye in complexes with amphiphilic anionic calix[4]resorcinarenes: binding by aggregates and individual molecules. J. Colloid Interface Sci. 407, 148–154 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Njoki, P.N., Lim, I., Mott, D., Park, H., Khan, B., Mishra, S., Sujakumar, R., Luo, J., Zhong, C.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664–14669 (2007)

    Article  CAS  Google Scholar 

  35. Ermakova, A.M., Morozova, J.E., Shalaeva, Y.V., Syakaev, V.V., Nizameev, I.R., Kadirov, M.K., Antipin, I.S., Konovalov, A.I.: The supramolecular approach to the phase transfer of carboxylic calixresorcinarene-capped silver nanoparticles. Colloids Surf A 524, 127–134 (2017)

    Article  CAS  Google Scholar 

  36. Wang, S., Xin, X., Zhang, H., Shen, J., Zheng, Y., Song, Z., Yang, Y.: Stable monodisperse colloidal spherical gold nanoparticles formed by an imidazolium gemini surfactant-based water-in-oil microemulsion with excellent catalytic performance. RSC Adv. 6, 28156–28164 (2016)

    Article  CAS  Google Scholar 

  37. Ermakova, A.M., Morozova, J.E., Shalaeva, Y.V., Syakaev, V.V., Nizameev, I.R., Kadirov, M.K., Antipin, I.S., Konovalov, A.I.: Calixresorcinarene-capped silver nanoparticles as new supramolecular hybrid nanocontainers. Mendeleev Commun. 27, 335–337 (2017)

    Article  CAS  Google Scholar 

  38. Morozova, J.E., Syakaev, V.V., Shalaeva, Y.V., Ermakova, A.M., Nizameev, I.R., Kadirov, M.K., Voloshina, A.D., Zobov, V.V., Antipin, I.S., Konovalov, A.I.: Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. Soft Matter 13, 2004–2013 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Shalaeva, Y.V., Morozova, J.E., Syakaev, V.V., Ermakova, A.M., Nizameev, I.R., Kadirov, M.K., Kazakova, E.K., Konovalov, A.I.: Formation of cooperative amidoamino calixresorcinarene—methotrexate nanosized aggregates in an aqueous solution and on the surface of gold nanoparticles. Supramol. Chem. (2018). https://doi.org/10.1080/10610278.2018.1467015

    Article  Google Scholar 

  40. de la Torre, J.G., Huertas, M.L., Carrasco, B.: HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Res. 147, 138–146 (2000)

    Article  CAS  Google Scholar 

  41. Pyrpassopoulos, S., Niarchos, D., Nounesis, G., Boukos, N., Zafiropoulou, I., Tzitzios, V.: Synthesis and self-organization of Au nanoparticles. Nanotechnology 18(48), 485604 (2007)

    Article  CAS  Google Scholar 

  42. Feigin, L.A., Svergun, D.I.: Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York (1987)

    Book  Google Scholar 

  43. Guinier, A., Fournet, G.: Small-Angle Scattering of X-Rays. Wiley, New York (1955)

    Google Scholar 

  44. Glatter, O., Kratky, O.: Small-Angle X-Ray Scattering. Academic Press, London (1982)

    Google Scholar 

  45. Bruno, I.J., Cole, J.C., Edgington, P.R., Kessler, M., Macrae, C.F., McCabe, P., Pearson, J., Taylor, R.: New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B 58, 389–397 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Russian Science Foundation (RSF) (Grant No. 17-73-20117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Shalaeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28086 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaeva, Y.V., Morozova, J.E., Gubaidullin, A.T. et al. Gold nanoparticles, capped by carboxy-calix[4]resorcinarenes: effect of structure and concentration of macrocycles on the nanoparticles size and aggregation. J Incl Phenom Macrocycl Chem 92, 211–221 (2018). https://doi.org/10.1007/s10847-018-0836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0836-7

Keywords

Navigation