Skip to main content
Log in

Self-assembled (pseudo)rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cucurbit[n]uril and its derivatives, a new family of macrocyclic hosts comprising n glycoluril units, have gained much attention for their exceptional application in many fields. In this review, we introduced the cucurbituril family and the development of its derivatives, which can be used in the molecular recognition and self-assembled materials such as pseudorotaxane, polyrotaxane. Moreover, cucurbituril provides the possibility to design stimulus–response devices and imitate the life secret at molecule level, such as the molecular devices controlled by pH, photochemistry, thermal and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55

Similar content being viewed by others

References

  1. Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988)

    Article  Google Scholar 

  2. Cram, D.J.: The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. 27, 1009–1020 (1988)

    Article  Google Scholar 

  3. Pedersen, C.J.: The discovery of crown ethers (Noble lecture). Angew. Chem. Int. Ed. 27, 1021–1027 (1988)

    Article  Google Scholar 

  4. Cram, D.J.: Preorganization—from solvents to spherands. Angew. Chem. Int. Ed. 25, 1039–1057 (1986)

    Article  Google Scholar 

  5. Sheng, J.C.: Supramolecular layered structure—assembly and function. Beijing Science Press, (2004)

  6. Zhang, X., Sheng, J.C.: Supramolecular science: a new understanding of the material world. Chin. Sci. Bull. 48, 1477–1478 (2003)

    Google Scholar 

  7. Sheng, J.C., Sun, J.Q.: Progress in supramolecular scientific research. Bull. Chin. Acad. Sci. 19, 420–424 (2005)

    Google Scholar 

  8. Eikelder, H.M.M.T., Markvoort, A.J., Greef, T.F.A.D., Hilbers, P.A.J.: An equilibrium model for chiral amplification in supramolecular polymers. J. Phys. Chem. B 116, 5291–5301 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Hart-Cooper, W.M., Clary, K.N., Toste, F.D.: Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Albelda, M.T., Frías, J.C., García-España, E.: Supramolecular complexation for environmental control. Chem. Soc. Rev. 41, 3859–3877 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Lagona, J., Mukhopadhyay, P., Chakrabarti, S.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  12. Behrend, R., Meyer, E., Rusche, F.I.: Ueber condensationsproducte aus glycoluril und formaldehyd. Justus Liebigs Ann. Chem. 339, 1–37 (1905)

    Article  Google Scholar 

  13. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  14. Kim, J., Jung, I.S., Kim, S.Y.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  15. Day, A., Arnold, A.P., Blanch, R.J.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J.X., Lin, R.L., Long, L.S.: A novel inclusion complex form between Q[10] host and Q[5] guest stabilized by potassium ion coordination. Inorg. Chem. Commun. 11, 1085–1087 (2008)

    Article  CAS  Google Scholar 

  17. Liu, S., Zavalij, P.Y., Isaacs, L.: Cucurbit[10]uril. J. Am. Chem. Soc. 127, 16798–16799 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The Cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  19. Flinn, A., Hough, G.C., Stoddart, J.F.: Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. 31, 1475–1477 (1992)

    Article  Google Scholar 

  20. Jansen, K., Buschmann, H.J., Wego, A.: Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macro. 39, 357–363 (2001)

    Article  CAS  Google Scholar 

  21. Buschmann, H.J., Cleve, E., Jansen, K.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta 437, 157–163 (2001)

    Article  CAS  Google Scholar 

  22. Miyahara, Y., Abe, K., Inazu, T.: “Molecular” molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed. 41, 3020–3023 (2002)

    Article  CAS  Google Scholar 

  23. Zhou, Q.B., Sun, X.Z., Zhang, H.B.: Water clusters: through which water capsules were connected to form supramolecular chains. J. Clust. Sci. 24, 969–977 (2013)

    Article  CAS  Google Scholar 

  24. Liu, J.X., Long, L.S., Huang, R.B.: Interesting anion-inclusion behavior of Cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J.X., Long, L.S., Huang, R.B.: Molecular capsules based on cucurbit[5]uril encapsulating “naked” anion chlorine. Cryst. Growth Des. 6, 2611–2614 (2006)

    Article  CAS  Google Scholar 

  26. Zhao, J., Kim, H.J., Oh, J.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. 113, 4363–4365 (2001)

    Article  Google Scholar 

  27. Isobe, H., Sato, S., Nakamura, E.: Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. Org. Lett. 4, 1287–1289 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Jon, S.Y., Selvapalam, N., Oh, D.H.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Lee, H.K., Park, K.M., Jeon, Y.J., Kim, D., Dong, H.O., Kim, H.S.: Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. J. Am. Chem. Soc. 127, 5006–5007 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Miyahara, Y., Goto, K., Oka, M.: Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 43, 5019–5022 (2004)

    Article  CAS  Google Scholar 

  31. Isaacs, L., Park, S.K., Liu, S.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chem. 122, 2428–2431 (2010)

    Article  Google Scholar 

  33. Cheng, X.J., Liang, L.L., Chen, K., Ji, N.N., Xiao, X., Zhang, J.X., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Ni, X.L., Tao, Z: Twisted cucurbit[14]uril. Angew. Chem. 125, 7393–7396 (2013)

    Article  Google Scholar 

  34. Wittenberg, J.B., Costales, M.G., Zavalij, P.Y., Isaacs, L.: A clipped [3]rotaxane derived from bis-nor-seco-cucurbit[10]uril. Chem. Commun. 47, 9420–9422 (2011)

    Article  CAS  Google Scholar 

  35. Huang, W.H., Liu, S., Zavalij, P.Y.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. Yao, Y.Q., Chen, K., Hua, Z.Y., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbit[n]uril-based host-guest-metal ion chemistry: an emerging branch in cucurbit[n]uril chemistry. J. Incl. Phenom. Macro. 89, 1–14 (2017)

    Article  CAS  Google Scholar 

  37. Buschmann, H.J., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chim. Acta. 193, 93–97 (1992)

    Article  CAS  Google Scholar 

  38. Buschmann, H.J., Cleve, E., Mutihac, L.: The formation of alkali and alkaline earth cation complexes with cucurbit[6]uril in aqueous solution: a critical survey of old and new results. J. Incl. Phenom. Macro. 65, 293–297 (2009)

    Article  CAS  Google Scholar 

  39. Jeon, Y.M., Kim, J., Whang, D.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)

    Article  CAS  Google Scholar 

  40. Jeon, Y.J., Kim, H., Jon, S.: Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J. Am. Chem. Soc. 126, 15944–15945 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Buschmann, H.J., Jansen, K., Schollmeyer, E.: Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg. Chem. Commun. 6, 531–534 (2003)

    Article  CAS  Google Scholar 

  42. Dietrich, B., Viout, P., Lehn, J.M.: Macrocyclic chemistry: aspects of organic and inorganic supramolecular chemistry. Acta Crystallogr. B 49, 1074 (1993)

    Google Scholar 

  43. Lehn, J.M.: From molecular to supramolecular chemistry. Wiley. KGaA, (1995)

  44. Liu, J.X., Long, L.S., Huang, R.B., Zheng, L.S.: Interesting anion-inclusion behavior of Cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Kellersberger, K.A., Anderson, J.D., Ward, S.M., Krakowiak, E.K., Dearden, D.V.: Encapsulation of N2, O2, methanol, or acetonitrile by decamethylcucurbit[5]uril(NH4 +)2 complexes in the gas phase: influence of the guest on “lid” tightness. J. Am. Chem. Soc. 123, 11316–11317 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. Freeman, W.A.: Structures of the para-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand cucurbituril, C36H36N24O12. Acta Crystallogr. B 40, 382–387 (1984)

    Article  Google Scholar 

  47. Mock, W.L., Shih, N.Y.: Host-guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)

    Article  CAS  Google Scholar 

  48. Gerasko, O.A., Samsonenko, D.G., Fedin, V.P.: Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev. 71(9), 741–760 (2002)

    Article  CAS  Google Scholar 

  49. Mohanty, J., Nau, W.M.: Ultrastable rhodamine with cucurbituril. Angew. Chem. 117, 3816–3820 (2005)

    Article  Google Scholar 

  50. Hou, Z., Tan, Y., Zhou, Q.: Side-chain pseudopolyrotaxanes by threading cucurbituril[6] onto quaternized poly-4-vinylpyridine derivative: synthesis and properties. Polymer 47, 5267–5274 (2006)

    Article  CAS  Google Scholar 

  51. Yang, H., Tan, Y., Hao, J., Yang, H., Liu, F.: Side-chain polypseudorotaxanes by threading cucurbit[7]uril onto poly-N-n-butyl-N′-(4-vinylbenzyl)-4,4′-bipyridinium bromide chloride: synthesis, characterization, and properties. J. Poly. Sci. 48, 2135–2142 (2010)

    Article  CAS  Google Scholar 

  52. Lee, J.W., Ko, Y.H., Park, S.H., Yamaguchi, K., Kim, K.: Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew. Chem. Int. Ed. 40, 746–749 (2001)

    Article  CAS  Google Scholar 

  53. Liu, Y., Huang, Z., Tan, X., Wang, Z., Zhang, X: Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. Chem. Commun. 49, 5766–5768 (2013)

    Article  CAS  Google Scholar 

  54. Ramalingam, V., Urbach, A.R.: Cucurbit[8]uril rotaxanes. Org. Lett. 13, 4898–4901 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Li, Y., Dong, Y., Miao, X., Ren, Y., Zhang, B., Wang, P., Yu, Y., Li, B., Isaacs, L., Cao, L.: Shape-controllable and fluorescent supramolecular organic frameworks through aqueous host–guest complexation. Angew. Chem. 57(3), 729–733 (2017)

    Article  CAS  Google Scholar 

  56. Zhou, Q.B., Li, Y.J., Han, Z.H., Gong, L., Chen, J.X., Zhang, H., Xia, J.Y., Peng, H., Fang, S.X., He, B.B., Yang, W.Q., Liu, L.F., Shen, Q., Zong, S.R., Zhang, H.B., Zhou, X.H., Hu, Y.H., Sun, W.: A novel two-dimensional polyrotaxane network self-assembled by heterowheel [4]pseudorotaxane. Supramol. Chem. 29(3), 176–182 (2016)

    Article  CAS  Google Scholar 

  57. Song, Y.F., Huang, X.H., Hua, H.J., Wang, Q.C.: The synthesis of a rigid conjugated viologen and its cucurbituril pseudorotaxanes. Dyes Pigm. 137, 229–235 (2017)

    Article  CAS  Google Scholar 

  58. Reany, O., Li, A., Yefet, M., Gilson, M.K., Keinan, E.: Attractive interactions between heteroallenes and the cucurbituril portal. J. Am. Chem. Soc. 139, 8138–8145 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, X.S., Wang, X.L., Zhu, F.L., Bao, H.F., Qin, C., Su, Z.M.: Guest exchange in porous cucurbit[6]uril-based metal–organic rotaxane framework probed by NMR and X-ray crystallography. Chem. Commun. 54, 5474–5477 (2018)

    Article  CAS  Google Scholar 

  60. Senler, S., Cheng, B., Kaifer, A.E.: Rotaxane formation by Cucurbit[7]uril in water and DMSO solutions. Org. Lett. 16, 5834–5837 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. Ulfkjær, A., Nielsen, F.W., Al-Kerdi, H., Ru, T., Nielsen, Z.K., Ulstrup, J., Sun, L., Moth-Poulsen, K., Zhang, J., Pittelkow, M.: A gold-nanoparticle stoppered [2]rotaxane. Nanoscale 10, 9133–9140 (2018)

    Article  PubMed  Google Scholar 

  62. Finbloom, J.A., Han, K., Slack, C.C., Furst, A.L., Francis, M.B.: Cucurbit[6]uril-promoted click chemistry for protein modification. J. Am. Chem. Soc. 139, 9691–9697 (2017)

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Y., Ke, C.F., Zhang, H.Y.: Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. J. Org. Chem. 72, 280–283 (2007)

    Article  CAS  PubMed  Google Scholar 

  64. Sun., H., Zhang, H.Y., Dai., Z., Han., X., Liu, Y.: New insights into the difference between rotaxane and pseudorotaxane. Chemistry 12(2), 265–270 (2016)

    Google Scholar 

  65. Liu, J.X., Hu, Y.F., Lin, R.L.: Anion channel structure through packing of cucurbit[5]uril-Pb2+ or cucurbit[5]uril-Hg2+ complexes. J. Coord. Chem. 63, 1369–1378 (2010)

    Article  CAS  Google Scholar 

  66. Liu, J.X., Dong, C.H., Long, L.S.: From 1D zigzag chain to 1D tubular structure, weak field ligand-dependent assembly of cucurbit[6]uril-based tubular coordination polymer. Dalton Trans. 36, 7344–7346 (2009)

    Article  CAS  Google Scholar 

  67. Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)

    Article  CAS  PubMed  Google Scholar 

  68. Wei, M.J., Zang, H.Y., Zhou, E.L., Shao, K.Z., Song, B.Q., Wang, X.L., Su, Z.M.: Coordination and supramolecular assembly of {Cd2Ge8V12O48} building block and Cucurbit[6] to form rotaxane-shaped hybrids. Dalton Trans. 45, 4989–4992 (2016)

    Article  CAS  PubMed  Google Scholar 

  69. Mei, L., Xie, Z.N., Hu, K.Q., Yuan, L.Y., Gao, Z.Q., Chai, Z.F., Shi, W.Q.: Supramolecular host-guest inclusion for distinguishing Cucurbit[7]uril-based pseudorotaxanes from small-molecule ligands in coordination assembly with uranyl center. Chemistry 23, 13995–14003 (2017)

    Article  CAS  PubMed  Google Scholar 

  70. Ge, Y.C., Mei, L., Xie, Z.N., Hu, K.Q., Xia, C.Q., Wang, X.L., Chai, Z.F., Shi, W.Q.: Supramolecular isomers of coordination-directed side-chain polypseudorotaxanes based on trimeric uranyl oxalate nodes. Chem. Eur. J. 23, 8380–8384 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Kim, K., Kim, D., Lee, J.W., Ko, Y.H., Kim, K.: Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem. Commun. 10, 848–849 (2004)

    Google Scholar 

  72. Yang, H., An, Q., Zhu, W., Li, W., Jiang, Y., Cui, J., Zhang, X., Li, G.: A new strategy for effective construction of protein stacks by using cucurbit[8]uril as a glue molecule. Chem. Commun. 48, 10633–10635 (2012)

    Article  CAS  Google Scholar 

  73. Li, D., Ren, K., Chang, H.: Cucurbit[8]uril supramolecular assembly for positively charged ultrathin films as nanocontainers. Langmuir 29, 14101–14107 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Buyukcakir, O., Yasar, F.T., Bozdemir,O.A., Icli, B., Akkaya, E.U.: Autonomous shuttling driven by an oscillating reaction: proof of principle in a cucurbit[7]uril-bodipy pseudorotaxane. Org. Lett. 15, 1012–1015 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Liu, J., Du, X.: pH and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642–3649 (2010)

    Article  CAS  Google Scholar 

  76. Yang, Q., Lv, J., Li, P.Y.: A pH-responsive self-healing gel with crosslinking of cucurbituril (CB[n]) via hydrogen bonding. Chem. Lett. 47(2), 192–195 (2018)

    Article  CAS  Google Scholar 

  77. Li, J.X., Si, C.Y., Sun, H.C., Zhu, J.Y., Pan, T.Z., Liu, S.D., Dong, Z.Y., Xu, J.Y., Luo, Q., Liu, J.Q.: Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation. Chem. Comm. 51(49), 9987–9990 (2015)

    Article  CAS  PubMed  Google Scholar 

  78. Freitag, M., Gundlach, L., Piotrowiak, P., Galoppini, E.: Fluorescence enhancement of di-p-tolyl viologen by complexation in cucurbit[7]uril. J. Am. Chem. Soc. 134, 3358–3366 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. Mohanty, J., Thakur, N., Choudhury, S.D., Barooah, N., Pal, H., Bhasikuttan, A.C.: Recognition-mediated light-up of thiazole orange with cucurbit[8]uril: exchange and release by chemical stimuli. J. Phys. Chem. B 116, 130–135 (2011)

    Article  CAS  PubMed  Google Scholar 

  80. Yu, Y., Li, Y.W., Wang, X.Q., Nian, H., Wang, L., Li, J., Zhao, Y.X., Yang, X., Liu, S.M., Cao, L.P.: Cucurbit[10]uril-based [2]Rotaxane: preparation and supramolecular assembly-induced fluorescence enhancement. J. Org. Chem. 82, 5590–5596 (2017)

    Article  CAS  PubMed  Google Scholar 

  81. Croissant, J., Zink, J.I.: Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 134, 7628–7631 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, J.W., Choi, S., Ko, Y.H., Kim, S.Y., Kim, K.I.: Novel [2]pseudorotaxanes containing cucurbituril as a molecular bead: unexpected formation of a kinetic product which spontaneously converts into a thermodynamic product by translocation of the bead. Bull. Korean Chem. Soc. 23, 1347–1350 (2002)

    Article  CAS  Google Scholar 

  83. Liu, Y., Li, X.Y., Zhang, H.Y.: Cyclodextrin-driven movement of cucurbit[7]uril. J. Org. Chem. 72, 3640–3645 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. Ding, Z.J., Zhang, H.Y., Wang, L.H., Ding, F., Liu, Y.: A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes. Org. Lett. 13, 856–859 (2011)

    Article  CAS  PubMed  Google Scholar 

  85. Finbloom, J.A., Slack, C.C., Bruns, C.J., Jeong, K., Wemmer, D.E., Pines, A., Francis, M.B.: Rotaxane-mediated suppression and activation of cucurbit[6]uril for molecular detection by 129Xe hyperCEST NMR. Chem. Commun. 52(15), 3119–3122 (2016)

    Article  CAS  Google Scholar 

  86. Hu, C., Zheng, Y., Yu, Z.Y., Abell, C., Scherman, O.A.: Surface-immobilised micelles via cucurbit[8]uril-rotaxanes for solvent-induced burst release. Chem. Commun. 51, 4858–4860 (2015)

    Article  CAS  Google Scholar 

  87. Hu, C., Tian, F., Zheng, Y., Tan, C.S.Y., West, K.R., Scherman, O.A.: Cucurbit[8]uril directed stimuli-responsive supramolecular polymer brushes for dynamic surface engineering. Chem. Sci. 6, 5303–5310 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the finance support of the Key Technology Integration and Demonstration Project for Mining and Flotation of Collophanite (2014HA004). Thanks Prof. Zhou Xiaohai (Wuhan University) and Prof. Zhang Haibo (Wuhan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiongbo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zhou, Q. & Li, Y. Self-assembled (pseudo)rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family. J Incl Phenom Macrocycl Chem 92, 81–101 (2018). https://doi.org/10.1007/s10847-018-0828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0828-7

Keywords

Navigation