Skip to main content

Structural studies of the inclusion compounds of α-naphthaleneacetic acid in heptakis(2,6-di-O-methyl)-β-Cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin by X-ray crystallography and molecular dynamics

Abstract

The crystal structures of the inclusion compounds of α-naphthaleneacetic acid molecule (NAA) in heptakis(2,6-di-O-methyl)-β-Cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin (TM-β-CD) are reported. The NAA/DM-β-CD inclusion complex crystallizes in the P212121 space group and its asymmetric unit contains two host molecules arranged co-axially in a head-to-tail mode, each one encapsulating one NAA guest molecule disordered over two distinct sites. One more NAA molecule is found outside the DM-β-CDs cavities, clathrated in the interstice between four neighboring hosts. The anhydrous complex units form screw channels deployed along the crystallographic a-axis. The NAA/TM-β-CD inclusion complex also crystallizes in the space group P212121. The guest molecule, disordered over two sites, is accommodated with its naphthyl group laying in the secondary rim of the host. The complexes stack along the a-axis forming columns and the crystal packing consists of antiparallel columns related by the b screw axis. The binding mode of the guest and the conformation of the host in these two inclusion complexes, is affected significantly by the guest molecular shape, the rigidity of the host macrocycle and the host–guest interactions reflecting the importance of the induced-fit process for inclusion complexation with methylated cyclodextrins. Furthermore, molecular dynamics simulations in explicit aqueous solvent show that in the absence of the crystal contacts the favored inclusion mode of NAA in both DM-β-CD and TM-β-CD host is the one with its naphthyl group laying equatorially in the host cavity and its carboxymethyl group pointing towards the primary host rim tethered by hydrogen bonds with methoxy or glucosidic oxygen atoms of the host.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

NAA:

a-Naphthaleneacetic acid

DM-β-CD:

Heptakis(2,6-di-O-methyl)-β-CD

TM-β-CD:

Heptakis(2,3,6-tri-O-methyl)-β-CD

DINA:

α-Naphthaleneacetic acid/heptakis(2,6-di-O-methyl)-β-Cyclodextrin inclusion compound

TRINA:

α-Naphthaleneacetic acid/heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin inclusion compound

MD:

Molecular dynamics

References

  1. 1.

    Van Uden, W., Woerdenbag, H.J., Pras, N.: Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology. Plant Cell Tissue Organ Cult. 38(2), 103–113 (1994)

    Article  CAS  Google Scholar 

  2. 2.

    Mascuso, S., Rinaldelli, E., Mura, P., Faucci, M.T., Manderiolli, A.: Employment of indolebutyric and indoleacetic acids complexed by α-cydodextrin on cuttings rooting in Olea europaea L. cv. Leccio del Corno. Effects of concentration and treatment time. Adv. Hortic. Sci. 11(3), 153–157 (1997)

    Google Scholar 

  3. 3.

    Miller, J.M., Yahiaoui, A.: Controlled release and plant-growth regulators. In: Gebelein, C.G., Carraher, C.E. (eds.) Bioactive Polymeric Systems, pp. 121–141. Springer, Boston (1985)

    Chapter  Google Scholar 

  4. 4.

    Martin, A.I., Sánchez-Chaves, M., Arranz, F.: Synthesis, characterization and controlled release behavior of adducts from chloroacetylated cellulose and α-naphthylacetic acid. React. Funct. Polym. 39(2), 179–187 (1999)

    Article  CAS  Google Scholar 

  5. 5.

    Han, H., Zhang, S., Sun, X.: A review on the molecular mechanism of plants rooting modulated by auxin. Afr. J. Biotechnol. 8(3), 348–353 (2009)

    CAS  Google Scholar 

  6. 6.

    Yan, Y.-H., Li, J.-L., Zhang, X.-Q., Yang, W.-Y., Wan, Y., Ma, Y.-M., Zhu, Y.-Q., Peng, Y., Huang, L.-K.: Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS ONE 9(3), e90700 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Paek, K., Yeung, E.: The effects of 1-naphthaleneacetic acid and N6-benzyladenine on the growth of Cymbidium forrestii rhizomes in vitro. Plant Cell Tissue Organ Cult. 24(2), 65–71 (1991)

    Article  CAS  Google Scholar 

  8. 8.

    Kashyap, V., Vinod Kumar, S., Colonnier, C., Fusari, F., Haicour, H., Rotino, G.L., Sihachakr, D., Rajam, M.V.: Biotechnology of eggplant. Sci. Hortic. 97(1), 1–25 (2003)

    Article  CAS  Google Scholar 

  9. 9.

    Mencuccini, M.: Effect of medium darkening on in vitro rooting capability and rooting seasonality of olive (Olea europaea L.) cultivars. Sci. Hortic. 97(2), 129–139 (2003)

    Article  Google Scholar 

  10. 10.

    Ramirez-Malagon, R., Borodanenko, A., Barrere-Guerra, J.L., Ochoa-Alejo, N.: Shoot number and shoot size as affected by growth regulators in in vitro cultures of Spathiphyllum floribundum L. Sci. Hortic. 89(3), 227–236 (2001)

    Article  Google Scholar 

  11. 11.

    Al-Bahrany, A.M.: Effect of phytohormones on in vitro shoot multiplication and rooting of lime Citrus aurantifolia (Christm.) Swing. Sci. Hortic. 95(4), 285–295 (2002)

    Article  CAS  Google Scholar 

  12. 12.

    Brutti, C., Apostolo, N.M., Ferrarotti, S.A., Llorente, B.E., Krymkiewicz, N.: Micropropagation of Cynara scolymus L. employing cyclodextrins to promote rhizogenesis. Sci. Hortic. 83(1), 1–10 (2000)

    Article  CAS  Google Scholar 

  13. 13.

    Dai, J., Kim, J.C.: Monoolein cubic phase containing ionizable aromatic compounds-loaded β-cyclodextrin polymers: FITC-dextran release property. Adv. Sci. Lett. 5, 247–252 (2012)

    Article  CAS  Google Scholar 

  14. 14.

    Lee, M.S., Kim, J.C.: Microgels formed by electrostatic and hydrophobic interaction of naphthaleneacetic acid with β-cyclodextrin-grafted polyethyleneimine. Colloid Polym. Sci. 289, 1177–1183 (2011)

    Article  CAS  Google Scholar 

  15. 15.

    Yang, X., Kim, J.-C.: Beta-cyclodextrin hydrogels containing naphthaleneacetic acid for pH-sensitive release. Biotechnol. Bioeng. 106(2), 295–302 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cavallaro, V., Trotta, F., Gennari, M., Di Silvestro, I., Pellegrino, A., Barbera, A.C.: Effects of the complex nanosponges-naphthaleneacetic acid and β cyclodextrins on in vitro rhizogenesis of globe artichoke. Acta Hortic. 983, 369–372 (2013). https://doi.org/10.17660/ActaHortic.2013.983.52

    Article  Google Scholar 

  17. 17.

    Peña, A.M., Salanas, F., Gómez, M., Acedo, M., Peña, M.S.: Absorptiometric and spectrofluorimetric study of the inclusion complexes of 2-naphthyloxyacetic acid and 1-naphthylacetic acid with β-cyclodextrin in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 15(2), 131–143 (1993)

    Article  Google Scholar 

  18. 18.

    Wang, E.-J., Chen, G.-Y., Han, C.-R.: Crystal structure of a novel sandwich inclusion complex of β-cyclodextrin with a-naphthylacetic acid. Chem. Res. Chin. Univ. 27(5), 730–733 (2011)

    Google Scholar 

  19. 19.

    Kokkinou, A., Yannakopoulou, K., Mavridis, I.M., Mentzafo, D.: Structure of the complex of beta-cyclodextrin with beta-naphthyloxyacetic acid in the solid state and in aqueous solution. Carbohydr. Res. 332(1), 85–94 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Triantafyllopoulou, V., Tsorteki, F., Mentzafos, D., Bethanis, K.: Inclusion compounds of plant growth regulators in cyclodextrins, part VII: study of the crystal structures of 2-naphthylacetic acid encapsulated in β-cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin complexes by X-ray crystallography. J. Incl. Phenom. Macrocycl. Chem. 75(3), 303–310 (2013)

    Article  CAS  Google Scholar 

  21. 21.

    Uekama, K., Irie, T.: Pharmaceutical applications of methylated cyclodextrin derivatives. In: Duchene, D. (eds.) Cyclodextrins and Their Industrial Uses, pp. 395–439. Editions de Sante Paris (1987)

    Google Scholar 

  22. 22.

    APEX 3, SAINT, SADABS Version 2012/1, 1, Bruker-AXS, Madison, Wisconsin, USA, 2012 (2012)

  23. 23.

    Sheldrick, G.M.: SADABS. (2012)

  24. 24.

    Sheldrick, G.M.: Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015)

    Article  CAS  Google Scholar 

  26. 26.

    Hübschle, C.B., Sheldrick, G.M., Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Schüttelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Thorn, A., Dittrich, B., Sheldrick, G.M.: Enhanced rigid-bond restraints. Acta Crystallogr. A 68, 448–451 (2012)

    Article  CAS  PubMed Central  Google Scholar 

  29. 29.

    Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A.: Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41(2), 466–470 (2008)

    Article  CAS  Google Scholar 

  30. 30.

    Schrödinger, L.L.C.: The PyMOL Molecular Graphics System, Version 1.8 (2015)

  31. 31.

    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42(2), 339–341 (2009)

    Article  CAS  Google Scholar 

  32. 32.

    Pedretti, A., Villa, L., Vistoli, G.: VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J. Mol. Model. 21(1), 47–49 (2002)

    Article  CAS  Google Scholar 

  33. 33.

    Case, D.A., Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz, K.M. Jr., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cezard, C., Trivelli, X., Aubry, F., Djedaini-Pilard, F., Dupradeau, F.-Y.: Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Phys. Chem. Chem. Phys. 13(33), 15103–15121 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Model. 25(2), 247–260 (2006)

    Article  CAS  Google Scholar 

  36. 36.

    Roe, D.R., Cheatham, T.E.: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9(7), 3084–3095 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang, J., Morin, P., Wang, W., Kollman, P.A.: Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 123(22), 5221–5230 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Miller, B.R. III, McGee, T.D. Jr., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E.J.: MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8(9), 3314–3321 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Genheden, S., Ryde, U.: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10(5), 449–461 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Trollope, L., Cruickshank, D.L., Noonan, T., Bourne, S.A., Sorrenti, M., Catenacci, L., Caira, M.R.: Inclusion of trans-resveratrol in methylated cyclodextrins: synthesis and solid-state structures. Beilstein J. Org. Chem. 10, 3136–3151 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Takahashi, H., Tsuboyama, S., Umezawa, Y., Honda, K., Nishio, M.: CH/π interactions as demonstrated in the crystal structure of host/guest compounds. A database study. Tetrahedron 56, 6185–6191 (2000). https://doi.org/10.1016/S0040-4020(00)00575-5

    Article  CAS  Google Scholar 

  43. 43.

    Cremer, D., Pople, J.: General definition of ring puckering coordinates. J. Am. Chem. Soc. 97(6), 1354–1358 (1975)

    Article  CAS  Google Scholar 

  44. 44.

    Aree, T., Saenger, W., Leibnitz, P., Hoier, H.: Crystal structure of heptakis(2,6-di-O-methyl)-β-cyclodextrin dihydrate: a water molecule in an apolar cavity. Carbohydr. Res. 315, 199–205 (1999). https://doi.org/10.1016/S0008-6215(99)00033-6

    Article  CAS  Google Scholar 

  45. 45.

    Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C.: The Cambridge structural database. Acta Crystallogr. B 72, 171–179 (2016)

    Article  CAS  Google Scholar 

  46. 46.

    Cardinael, P., Peulon, V., Perez, G., Coquerel, G., Toupet, L.: Characterization of crystalline complexes between heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin and various alkanes or alkenes (5 ≤ C ≤ 10)°. J. Incl. Phenom. Macrocycl. Chem. 39(1), 159–167 (2001)

    Article  CAS  Google Scholar 

  47. 47.

    Caira, M.R., Giordano, F., Vilakazi, S.L.: X-ray structure and thermal properties of a 1:1 inclusion complex between permethylated β-cyclodextrin and psoralen. Supramol. Chem. 16(6), 389–393 (2004). https://doi.org/10.1080/10610270410001713321

    Article  CAS  Google Scholar 

  48. 48.

    Caira, M.R., Griffith, V.J., Nassimbeni, L.R., Van Oudtshoorn, B.: X-ray structure and thermal analysis of a 1∶1 complex between (S)-naproxen and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 20, 277–290 (1994). https://doi.org/10.1007/BF00708773

    Article  CAS  Google Scholar 

  49. 49.

    Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bulletin Chem. Soc. Japan 48(2), 375–378 (1975). https://doi.org/10.1246/bcsj.48.375

    Article  CAS  Google Scholar 

  50. 50.

    Ueno, A., Takahashi, K., Osa, T.: One host-two guests complexation between γ-cyclodextrin and sodium α-naphthylacetate as shown by excimer fluorescence. J. Chem. Soc. Chem. Commun. (1980). https://doi.org/10.1039/C39800000921

    Article  Google Scholar 

  51. 51.

    Hamai, S.: Association of inclusion compounds of beta-cyclodextrin in aqueous solution. Bulletin Chem. Soc. Japan 55(9), 2721–2729 (1982)

    Article  CAS  Google Scholar 

  52. 52.

    Szejtli, J.: Cyclodextrin technology. Kluwer, Boston (1988)

    Book  Google Scholar 

  53. 53.

    Evans, C.H., Partyka, M., Van Stam, J.: Naphthalene complexation by β-cyclodextrin: influence of added short chain branched and linear alcohols. J. Incl. Phenom. Macrocycl. Chem. 38(1), 381–396 (2000). https://doi.org/10.1023/A:1008187916379

    Article  CAS  Google Scholar 

  54. 54.

    Harata, K.: The X-ray structure of an inclusion complex of heptakis(2,6-di-O-methyl)-beta-cyclodextrin with 2-naphthoic acid. J. Chem. Soc. Chem. Commun. (1993). https://doi.org/10.1039/C39930000546

    Article  Google Scholar 

  55. 55.

    Anibarro, M., Gessler, K., Uson, I., Sheldrick, G.M., Saenger, W.: X-ray structure of beta-cyclodextrin-2,7-dihydroxy-naphthalene.4.6H(2)O: an unusually distorted macrocycle. Carbohydr. Res. 333, 251–256 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Harata, K.: Crystallographic study of cyclodextrins and their inclusion complexes. In: Dodziuk, H. (eds.) Cyclodextrins and Their Complexes, pp. 147–198. Wiley, New York (2006)

    Chapter  Google Scholar 

  57. 57.

    Lindner, K., Saenger, W.: Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr. Res. 99, 103–115 (1982). https://doi.org/10.1016/S0008-6215(00)81901-1

    Article  CAS  Google Scholar 

  58. 58.

    Betzel, C., Saenger, W., Hingerty, B.E., Brown, G.M.: Topography of cyclodextrin inclusion complexes, part 20. Circular and flip-flop hydrogen bonding in beta-cyclodextrin undecahydrate: a neutron diffraction study. J. Am. Chem. Soc. 106, 7545–7557 (1984). https://doi.org/10.1021/ja00336a039

    Article  CAS  Google Scholar 

  59. 59.

    Li, J.-Y., Sun, D.-F., Hao, A.-Y., Sun, H.-Y., Shen, J.: Crystal structure of a new cyclomaltoheptaose hydrate: β-cyclodextrin·7.5H2O. Carbohydr. Res. 345, 685–688 (2010). https://doi.org/10.1016/j.carres.2009.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mentzafos, D., Mavridis, I.M., Le Bas, G., Tsoucaris, G.: Structure of the 4-tert-butylbenzyl alcohol–β-cyclodextrin complex. Common features in the geometry of β-cyclodextrin dimeric complexes. Acta Crystallogr. B 47, 746–757 (1991). https://doi.org/10.1107/S010876819100366X

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kostas Bethanis.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bethanis, K., Christoforides, E., Tsorteki, F. et al. Structural studies of the inclusion compounds of α-naphthaleneacetic acid in heptakis(2,6-di-O-methyl)-β-Cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin by X-ray crystallography and molecular dynamics. J Incl Phenom Macrocycl Chem 92, 157–171 (2018). https://doi.org/10.1007/s10847-018-0824-y

Download citation

Keywords

  • α-Naphthaleneacetic acid
  • Heptakis(2,6-di-O-methyl)-β-Cyclodextrin
  • Heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin
  • Inclusion compounds
  • Crystal structure
  • Molecular dynamics