Skip to main content
Log in

Synthesis, characterization of novel rotaxanes depend on cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the present work, new bis hexachloro methanoisoindol derivatives (1) and (3) were prepared. Also, novel interlocked compounds [2] rotaxane (2) and [3] rotaxane (4) have been synthesized. [2] rotaxane (2) was formed by threading of β-cyclodextrin into succinic dihydrazide to give pseudorotaxane that was trapped by using chlorendic anhydride. [3] rotaxane (4) was obtained by entering α-cyclodextrin rings through sebacoyl chloride to afford the corresponding pseudorotaxane and locked in the terminal groups by using N-amino-1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboximide. The chemical structure of the obtained compounds was confirmed by FT-IR, 1H-NMR, 13C-NMR and 2D-NMR (cosy) spectra. The morphology of [2] and [3] rotaxanes was examined by Scanning Electron Microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruns, C.J., Stoddart, J.F.: The Nature of the Mechanical Bond From Molecules to Machines. Wiley, Hoboken (2017)

    Google Scholar 

  2. Izatt, R.M.: Macrocyclic and Supramolecular Chemistry, How Izatt-Christensen Award Winners Shaped the Field, Wiley, Hoboken (2016)

    Book  Google Scholar 

  3. Lewis, J.E.M., Beer, P.D., Loeb, S.J., Goldup, S.M.: Metal ions in the synthesis of interlocked molecules and materials. Chem. Soc. Rev. 46, 2577–3259 (2017)

    Article  CAS  Google Scholar 

  4. Dardeer, H.M., Hassan, M.A.: Synthesis of [2] rotaxanes derived from host-gust interaction. Int. J. Chem. 7(1), 161–167 (2015)

    Article  CAS  Google Scholar 

  5. Dardeer, H.M.: Formation of new inclusion complexes depend on cyclodextrin. Chem. J. 5(1), 14–19 (2015)

    CAS  Google Scholar 

  6. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  7. Loftsson, T., Sigursson, H.H., Másson, M., Schipper, N.: Preparation of solid drug/cyclodextrin complexes of acidic and basic drugs. Pharmazie 95, 25–29 (2004)

    Google Scholar 

  8. Dardeer, H.M.: Importance of cyclodextrins into inclusion complexes. Int. J. Adv. Res. 2(4), 414–428 (2014)

    Google Scholar 

  9. Hiratani, K., Suga, J.-I., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., Watanabe, K.: A new synthetic method for rotaxanes via tandem Claisen rearrangement, diesterification, and aminolysis. Tetrahedron Lett. 43, 5747 (2002)

    Article  CAS  Google Scholar 

  10. Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, Y., Kanesato, M.: Synthesis of [1] rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 126, 13568 (2004)

    Article  CAS  Google Scholar 

  11. Kameta, N., Hiratani, K., Nagawa, Y.: A novel synthesis of chiral rotaxanes via covalent bond formation. Chem. Commun. 4, 466 (2004)

    Article  Google Scholar 

  12. Hirose, K., Nishihara, K., Harada, N., Nakamura, Y., Masuda, D., Araki, M., Tobe, Y.: Highly selective and high-yielding rotaxane synthesis via aminolysis of prerotaxanes consisting of a ring component and a stopper unit. Org. Lett. 9, 2969 (2007)

    Article  CAS  Google Scholar 

  13. Steemers, L., Wanner, M.J., Ehlers, A.W., Hiemstra, H., van Maarseveen, J.H.: A short covalent synthesis of an all-carbon-ring [2]rotaxane. Org. Lett. 19, 2342–2345 (2017)

    Article  CAS  Google Scholar 

  14. Harrison, I.T., Harrison, S.: Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967)

    Article  CAS  Google Scholar 

  15. Chill, G., Zollenkoof, H.: Chapter I Pseudorotaxanes and Rotaxanes. Nachr. Chem. Tech. 79, 149–152 (1967)

    Google Scholar 

  16. Johnston, A.G., Leigh, D.A., Pritchard, R.J., Deegan, M.D.: Angew. Chem. Int.Ed. 34, 1209–1212 (1995)

    Article  CAS  Google Scholar 

  17. Yamakawa, T., Nishimura, S.: Liquid formulation of a novel nonfluorinated topical quinolone, T-3912, utilizing the synergic solubilizing effect of the combined use of magnesium ions and hydroxypropyl-β-cyclodextrin. J. Control. Rel. 86, 101–113 (2003)

    Article  CAS  Google Scholar 

  18. Weck, M., Mohr, B., Sauvage, J.P., Grubbs, R.H.: Synthesis of catenane structures via ring-closing metathesis. J. Org.Chem. 64, 5463–5471 (1999)

    Article  CAS  Google Scholar 

  19. Anelli, P.-L., Spencer, N., Stoddart, J.F.: A Molecular Shuttle. J. Am. Chem. Soc. 113, 513–5133 (1991)

    Article  Google Scholar 

  20. Maksimov, M.O., Pan, S.J., Link, A.J.: Lasso peptides: structure, function, biosynthesis, andengineering. Nat. Prod. Rep. 29, 996–1006 (2012)

    Article  CAS  Google Scholar 

  21. Potterat, O., Wagner, K., Gemmecker, G., Mack, J., Puder, C., Vettermann, R., Streicher, R.: BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp.. J. Nat. Prod. 67, 1528–1531 (2004)

    Article  CAS  Google Scholar 

  22. Yang, W., Li, Y., Liu, H., Chi, L., Li, Y.: Design and assembly of rotaxane-based molecular switches and machines. Small 8, 504 (2012)

    Article  CAS  Google Scholar 

  23. Balzani, V., Semeraro, M., Venturi, M., Credi, A.: Reading and powering molecular machines by light. In: Feringa, B. L., Browne, W. R. (eds.) Molecular Switches, 2nd Ed., vol. 2, p. 597. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  24. Bodis, P., Yeremenko, S., Berna, J., Buma, W.J., Leigh, D.A., Woutersen, S.: Bimodal dynamics of mechanically constrained hydrogen bonds revealed by vibrational photon echoes. J. Chem. Phys. 134, 134504 (2011)

    Article  Google Scholar 

  25. Lussis, P., Svaldo-Lanero, T., Bertocco, A., Fustin, C.-A., Leigh, D.A., Duwez, A.-S.: A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6, 553 (2011)

    Article  CAS  Google Scholar 

  26. Yan, X., Zhou, M., Chen, J., Chi, X., Dong, S., Zhang, M., Ding, X., Yu, Y., Shao, S., Huang, F.: Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. Chem. Commun. 47, 7086 (2011)

    Article  CAS  Google Scholar 

  27. Niu, Z., Huang, F., Gibson, H.W.: Supramolecular AA−BB-type linear polymers with relatively high molecular weights via the self-assembly of bis (m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative. J. Am. Chem. Soc. 133, 133 (2011)

    Article  Google Scholar 

  28. Tuncel, D., Uenal, O., Artar, M.: Supramolecular assemblies constructed by cucurbituril-catalyzed click reaction. Isr. J. Chem. 51, 525 (2011)

    Article  CAS  Google Scholar 

  29. Vedernikov, A.I., Lobova, N.A., Kuzmina, L.G., Howard, J.A.K., Strelenko, Y.A., Alfimov, M.V., Gromov, S.P.: Pseudorotaxane complexes between viologen vinylogues and cucurbit [7] uril: new prototype of photocontrolled molecular machine. J. Mol. Struct 989, 114 (2011)

    Article  CAS  Google Scholar 

  30. Briggs, B.N., Durola, F., McMillin, D.R., Sauvage, J.-P.: Luminescence studies of copper (I)-containing [2] pseudorotaxanes. Can. J. Chem. 89, 98 (2011)

    Article  CAS  Google Scholar 

  31. Niu, Z., Slebodnick, C., Gibson, H.W.: Pseudocryptand-type [3] Pseudorotaxane and “hook-ring” polypseudo [2] catenane based on a bis (m-phenylene)-32-crown-10 derivative and bisparaquat derivatives. Org. Lett. 13, 4616 (2011)

    Article  CAS  Google Scholar 

  32. Fernando, I.R., Bairu, S.G., Ramakrishna, G., Mezei, G.: Single-color pseudorotaxane-based temperature sensing. New J. Chem. 34, 2097 (2010)

    Article  CAS  Google Scholar 

  33. Li, J.J., Zhao, F., Li, J.: Polyrotaxanes for applications in life science and biotechnology. Appl. Microbiol. Biotechnol. 90, 427 (2011)

    Article  CAS  Google Scholar 

  34. Balzani, V., Credi, A., Venturi, M.: Molecular Devices and Machines—A Journey Into the Nano World. Wiley-VCH, Weinheim (2003)

    Book  Google Scholar 

  35. Dardee, H.M., El-sisi, A.A., Emam, A.A., Nora, M., Hilal: Synthesis, application of a novel azo dye and its inclusion complex with beta-cyclodextrin onto polyester fabric. Int. J. Text. Sci. 6(3), 79–87 (2017)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to her father, Prof. Aly of organic chemistry and her family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemat M. Dardeer.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 869 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dardeer, H.M. Synthesis, characterization of novel rotaxanes depend on cyclodextrins. J Incl Phenom Macrocycl Chem 91, 105–114 (2018). https://doi.org/10.1007/s10847-018-0805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0805-1

Keywords

Navigation