Advertisement

Influence of polyether chain on the non-covalent interactions and stability of the conformers of calix[4]crown ethers

  • Satish Kumar
  • Jaspreet Kaur
  • Anjai Verma
  • Mukesh
  • Arun Kumar
  • Sojkumar Dominic
Original Article
  • 55 Downloads

Abstract

Conformational preferences of the calix[4]crown-(4,5,6,7)-ethers were studied utilizing HF/6-31G(d), B3LYP/6-31G(d), B3LYP/6-311G(d), MPWB95/6-31G(d), MPWIPW91/6-31G(d) and M062X/6-31G(d) methods. DFT-D3 (Becke–Johnson) dispersion correction method was also employed. The results acquired from the analysis of the computational data indicated that the stability of conformers of calix[4]crown-(4,5,6,7)-ethers follows the order; cone conformer > partial cone conformer > 1,3-alternate conformer. It was initially assessed, in general, that both hydrogen bond and OH⋯π interactions play a crucial role in determining the stability of the different conformers. It was further observed that the strength of both H-bond and OH⋯π interactions, are dependent on the length of the polyether bridge. Hence, in order to comprehend them better, the effect of these interactions was studied systematically on the conformational stability of different isomers. It is found that both intramolecular hydrogen bonds and O–H⋯π interactions are mainly responsible for relative stabilities of these conformers, which in turn is also dependent on the length of the polyether bridges.

Graphical Abstract

The computational study reported here demonstrate that the size of the polyether bridge along with non-covalent interactions such as hydrogen bond and OH⋯π interactions play an important role in determining the stability of the conformers of calix[4]crown ethers.

Keywords

Calix[4]crown ether Calixarenes Computational methods Calix[4]crown ether conformers Crown ether 

Notes

Acknowledgements

The authors sincerely thank DRDO (ERIP/ER/DG-NSM/990116702/M01/1645) and DST-SERB (EMR/2016/005022) for financial support. Authors are thankful to the Principal, St. Stephen’s College for providing the facilities. The authors are also thankful to Mr. K. M. Mathew for the support.

Supplementary material

10847_2018_801_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2287 KB)

References

  1. 1.
    Chawla, H.M., Pant, N., Kumar, S., Kumar, N., Black, D.S.C.: In chemical sensors: fundamentals of sensing material. In: Korotcenkov, G. (ed.) Polymers and Other Materials, vol. 3, p. 300. Momentum Press, New York (2010)Google Scholar
  2. 2.
    Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J.: Calixarenes 2001. Kluwer Academic, Dordrecht (2001)Google Scholar
  3. 3.
    Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  4. 4.
    Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012)CrossRefGoogle Scholar
  5. 5.
    Pichierri, F.: Effect of fluorine substitution in calix[4]pyrrole: a DFT study. J. Mol. Struct. 870(1), 36–42 (2008)CrossRefGoogle Scholar
  6. 6.
    Talanova, G.G., Talanov, V.S., Surowiec, K., Bartsch, R.A.: Effect of Na+ on solvent extraction of alkaline earth metal cations by proton-ionizable calix[4]arenes. ARKIVOC 7, 160–169 (2010)Google Scholar
  7. 7.
    Dinake, P., Prokhorova, P.E., Talanov, V.S., Butcher, R.J., Talanova, G.G.: A new fluorogenic calix[4]arene N-dansylcarboxamide in the cone conformation for selective optical recognition of mercury(II). Tetrahedron Lett. 51(38), 5016–5019 (2010)CrossRefGoogle Scholar
  8. 8.
    Dinake, P.: Effect of Conformational Preorganization of Dansyl Containing Calix[4]arene on Selective Optical Recognition of Mercury(II). Howard University, Washington, DC (2012)Google Scholar
  9. 9.
    Kim, K., Choe, J.-I.: DFT study for calix[4]tube complexed with alkali metal ion. J. Comput. Theory Nanosci. 6(11), 2407–2411 (2009)CrossRefGoogle Scholar
  10. 10.
    Kim, K., Choe, J.-I.: DFT study of p-tert-butylcalix[6]aryl ester complexed with alkylammonium ions. Bull. Korean Chem. Soc. 30(3), 589–594 (2009)CrossRefGoogle Scholar
  11. 11.
    Pichierri, F.: Effect of fluorine substitution in calix(4)pyrrole: A DFT study. J. Mol. Struct. 870(1–3), 36–42 (2008).  https://doi.org/10.1016/j.theochem.2008.08.032 CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Mathew, K., Neelam, P., Kumar, A.: Influence of hydrogen bonding on the conformational stability of calix[4]crown-4-ether. Indian J. Chem. A 54, 52–57 (2015)Google Scholar
  13. 13.
    Kumar, S., Mathew, K., Sahoo, P., Kumar, A.: Influence of hydrogen bonding on the conformational stability of calix[4]crown-4-ether. Indian J. Chem. A 54(1), 52–57 (2015)Google Scholar
  14. 14.
    Kim, K.-H., Choe, J.-I.: mPW1PW91 calculated conformational study of calix[n]arene (n = 4,5,6): hydrogen bond. J. Korean Chem. Soc. 53(6), 640–652 (2009)CrossRefGoogle Scholar
  15. 15.
    Hong, J., Ham, S.: Comparative study of calix[4]arene derivatives: implications for ligand design. Tetrahedron Lett. 49(15), 2393–2396 (2008)CrossRefGoogle Scholar
  16. 16.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. In. Gaussian, Inc., Wallingford CT, (2009)Google Scholar
  17. 17.
    Neese, F.: The ORCA program system. Wiley Interdisciplinary Reviews. Comput. Mol. Sci. 2(1), 73–78 (2012).  https://doi.org/10.1002/wcms.81 CrossRefGoogle Scholar
  18. 18.
    Schröder, H., Creon, A., Schwabe, T.: Reformulation of the D3 (Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients. J. Chem. Theory Comput. 11(7), 3163–3170 (2015).  https://doi.org/10.1021/acs.jctc.5b00400 CrossRefGoogle Scholar
  19. 19.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011).  https://doi.org/10.1002/jcc.21759 CrossRefGoogle Scholar
  20. 20.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010).  https://doi.org/10.1063/1.3382344 CrossRefGoogle Scholar
  21. 21.
    Gutsche, C.D.: Calixarenes: An Introduction. The Royal Society of Chemistry, Cambridge, (2008)Google Scholar
  22. 22.
    Choe, J.-I., Lee, S.H., Oh, D.-S.: Ab initio study of the conformations of tetramethoxycalix[4]arenes. Bull. Korean Chem. Soc. 25(1), 55–58 (2004)CrossRefGoogle Scholar
  23. 23.
    Agnihotri, P., Suresh, E., Paul, P., Ghosh, P.K.: Synthesis, crystal structures, cation-binding properties and the influence of intramolecular C–H⋯O interactions on the complexation behaviour of a family of cone p-tert-butylcalix[4]arene-crown-5 compounds. Eur. J. Inorg. Chem. 17, 3369–3381 (2006)CrossRefGoogle Scholar
  24. 24.
    Kim, K., Choe, J.-I.: DFT conformational study of calix[6]arene: hydrogen bond. Bull. Korean Chem. Soc. 30(4), 837–845 (2009)CrossRefGoogle Scholar
  25. 25.
    Jeffrey, G.A.: An Introduction to Hydrogen Bonding, vol. 12. Oxford University Press, New York, (1997)Google Scholar
  26. 26.
    Frank, M., Maas, G., Schatz, J.: Calix[4]arene-supported N-heterocyclic carbene ligands as catalysts for Suzuki cross-coupling reactions of chlorotoluene. Eur. J. Org. Chem. 3, 607–613 (2004).  https://doi.org/10.1002/ejoc.200300542 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Satish Kumar
    • 1
  • Jaspreet Kaur
    • 1
  • Anjai Verma
    • 2
  • Mukesh
    • 3
  • Arun Kumar
    • 1
  • Sojkumar Dominic
    • 1
  1. 1.Department of Chemistry, St. Stephen’s CollegeUniversity EnclaveDelhiIndia
  2. 2.Department of ChemistryAtma Ram Sanatan Dharma College (University of Delhi)DelhiIndia
  3. 3.Department of ChemistryKeshav Mahavidyalaya (University of Delhi)DelhiIndia

Personalised recommendations