Skip to main content
Log in

Characterization and cytotoxicity of a benzocaine inclusion complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Benzocaine (BZC), is a local anesthetic widely used in topical formulations as well as in throat pastilles. A disadvantage is that the compound presents low aqueous solubility. The present work describes the preparation and characterization of an inclusion complex between BZC and β-cyclodextrin (β-CD), followed by cytotoxicity assays. The association constant (Ka) was calculated using solubility isotherms, at different temperatures, and an HPLC procedure, at room temperature, employing a reverse phase C18 column, with a mobile phase consisting of water/acetonitrile. Ka obtained with solubility isotherms at temperatures of 25, 35, and 45 °C were 229.8, 317.1, and 520.3 M−1, respectively. Employing HPLC, Ka was 38.0 M−1. The difference in the Ka value could be explained because HPLC analyses were conducted using organic solvent, which affected the host–guest interaction. Moreover, the continuous flow could have altered the degree of association of the drug with β-CD. The BZC/CD inclusion complex was characterized using infrared spectroscopy, thermogravimetry, and X-ray diffraction. Analysis showed a good agreement with literature, suggesting that the complex was established. Cytotoxicity assays using fibroblast V79 cells showed that BZC/CD formulation was not cytotoxic, demonstrating its potential to reduce the toxicity of the anesthetic. The assays demonstrated an effective interaction between BZC and CD, and that the inclusion complex was less toxic to V79 cells than the plain BZC, turning it a good alternative to decrease its toxicity when administered to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brunton, L.L., Blumenthal, D.K., Murri, N., Dandan, R.H., Knollmann, B.C.: Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  2. Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Oyama Junior, S., de Paula, E.: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 39, 956–963 (2005)

    Article  CAS  Google Scholar 

  3. Al-Marzouqi, A.H., Jobe, B., Dowaidar, A., Maestrelli, F., Mura, P.: Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complexes—comparison with conventional methods. J. Pharm. Biomed. Anal. 43, 566–574 (2006)

    Article  Google Scholar 

  4. Yang, H., Parniak, M.A., Hillier, S.L., Rohan, L.C.: A thermodynamic study of the cyclodextrin—UC781 inclusion complex using a HPLC method. J. Incl. Phenom. Macrocycl. Chem. 72, 459–465 (2012)

    Article  CAS  Google Scholar 

  5. Sancho, M.I., Gasull, E., Blanco, S.E., Castro, E.A.: Inclusion complex of 2-chlorobenzophenone with cyclomaltoheptaose (β-cyclodextrin): temperature, solvents effects and molecular modeling. Carbohydr. Res. 346, 1978–1984 (2011)

    Article  CAS  Google Scholar 

  6. Buha, S.M., Baxi, G.A., Shrivastav, P.S.: Liquid chromatography study on atenolol-β-cyclodextrin inclusion complex. ISRN Anal. Chem. 2012, 1–8 (2012)

    Article  Google Scholar 

  7. Carvalho, L.B., Pinto, L.M.A.: Formation of inclusion complexes and controlled release of atrazine using free or silica-anchored β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 74, 375–381 (2012)

    Article  CAS  Google Scholar 

  8. Rodrigues, S.G., Chaves, I.S., Melo, N.F.S., de Jesus, M.B., Fraceto, L.F., Fernandes, S.A., de Paula, E., Freitas, M.P., Pinto, L.M.A.: Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. J. Incl. Phenom. Macrocycl. Chem. 70, 19–28 (2011)

    Article  CAS  Google Scholar 

  9. Pérez-Garrido, A., Helguera, A.M., Cordeiro, M.N.D.S., Escudero, A.G.: QSPR modelling with the topological substructural molecular design approach: β-cyclodextrin complexation. J. Pharm. Sci. 98, 4557–4575 (2009)

    Article  Google Scholar 

  10. Moraes, C.M., Abrami, P., de Paula, E., Braga, A.F., Fraceto, L.F.: Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 331, 99–106 (2007)

    Article  CAS  Google Scholar 

  11. Araújo, D.R., Tsuneda, S.S., Cereda, C.M.S., Carvalho, F.D.G.F., Preté, P.S.C., Fernandes, S.A., Yokaichiya, F., Franco, M.K.K.D., Mazzaro, I., Fraceto, L.F., Braga, A.F.A., de Paula, E.: Development and pharmacological evaluation of ropivacaine-2-hydroxypropyl-β-cyclodextrin inclusion complex. Eur. J. Pharm. Sci. 33, 60–71 (2008)

    Article  Google Scholar 

  12. Arantes, L.M., Scarelli, C., Marsaioli, A.J., de Paula, E., Fernandes, S.A.: Proparacaine complexation with β-cyclodextrin and p-sulfonic acid calix[6]arene, as evaluated by varied 1H-NMR approaches. Magn. Reson. Chem. 47, 757–763 (2009)

    Article  CAS  Google Scholar 

  13. de Paula, E., Cereda, C.M.S., Tofoli, G.R., Franz-Montan, M., Fraceto, L.F., de Araujo, D.R.: Drug delivery systems for local anesthetics. Recent Pat. Drug Deliv. Formul. 4, 23–34 (2010)

    Article  Google Scholar 

  14. Jug, M., Maestrelli, F., Bragagni, M., Mura, P.: Preparation and solid-state characterization of bupivacaine hydrochloride cyclodextrin complexes aimed for buccal delivery. J. Pharm. Biomed. Anal. 52, 9–18 (2010)

    Article  CAS  Google Scholar 

  15. Lima, R.A.F., Jesus, M.B., Cereda, C.M.S., Tofoli, G.R., Cabeça, L.F., Mazzaro, I., Fraceto, L.F., de Paula, E.: Improvement of tetracaine antinociceptive effect by inclusion in cyclodextrins. J. Drug Target. 20, 85–96 (2012)

    Article  Google Scholar 

  16. Higuchi, T.E., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–121 (1965)

    CAS  Google Scholar 

  17. Riddell, R.J., Panacer, D.S., Wilde, S.M., Clothier, R.H., Ball, M.: The importance of exposure period and cell type in in vitro cytotoxicity tests. Altern. Lab. Anim. 14, 86–92 (1986)

    CAS  Google Scholar 

  18. Dawoud, A.A., Al-Rawashdeh, N.: Spectrofluorometric, thermal, and molecular mechanics studies of the inclusion complexation of selected imidazoline-derived drugs with β-cyclodextrin in aqueous media. J. Incl. Phenom. Macrocycl. Chem. 60, 293–301 (2008)

    Article  CAS  Google Scholar 

  19. Al-Rawashdeh, N.A.F., Al-Ajlouni, A.M., Bukallah, S.B., Bataineh, N.: Activation of H2O2 by methyltrioxorhenium(VII) inside β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 70, 471–480 (2011)

    Article  CAS  Google Scholar 

  20. Gazpio, C., Sánches, M., García-Zubiri, I.X., Vélaz, I., Martínez-Ohárriz, C., Martín, C., Zornoza, A.: HPLC and solubility study of the interaction between pindolol and cyclodextrin. J. Pharm. Biomed. Anal. 37, 487–492 (2005)

    Article  CAS  Google Scholar 

  21. Singh, R., Bharti, N., Madan, J., Hiremath, S.N.: Characterization of cyclodextrin inclusion complexes—a review. J. Pharm. Sci. Technol. 2, 171–183 (2010)

    CAS  Google Scholar 

  22. Silverstein, R.M., Webster, F.X., Kiemle, D.: Spectrometric Identification of Organic Compounds, 7th edn. Wiley, New York (2005)

    Google Scholar 

  23. Tsai, Y., Tsai, H.H., Wu, C.P., Tsai, F.J.: Preparation, characterization and activity of the inclusion complex of paeonol with β-cyclodextrin. Food Chem. 120, 837–841 (2010)

    Article  CAS  Google Scholar 

  24. Garnero, C., Aiassa, V., Longhi, M.: Sulfamethoxazole:hydroxypropyl-β-cyclodextrin complex: preparation and characterization. J. Pharm. Biomed. Anal. 63, 74–79 (2012)

    Article  CAS  Google Scholar 

  25. Mura, P., Furlanetto, S., Cirri, M., Maestrelli, F., Corti, G., Pinzauti, S.: Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state. J. Pharm. Biomed. Anal. 37, 987–994 (2005)

    Article  CAS  Google Scholar 

  26. Varghese, B., Suliman, F.O., Al-Hajri, A., Al Bishri, N.S.S., Al-Rwashda, N.: Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. Spectrochim. Acta A 190, 392–401 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Centro de Análises e Prospecção Química (CAPQ/UFLA), Departamento de Ciências do Solo (UFLA), and Laboratório de Cultura de Células (UNICAMP) for the provision of equipment and facilities. M.Z.C. received a fellowship from FAPEMIG, and L.M.A.P. received a fellowship from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Matos Alves Pinto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2018_791_MOESM1_ESM.tif

Supplementary material 1 Decrease in BZC retention time in the presence of increasing concentrations of β-CD. Chromatographic conditions described in the methodology section (TIF 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, L.H., de Carvalho, M.Z., Melo, P.d.S. et al. Characterization and cytotoxicity of a benzocaine inclusion complex. J Incl Phenom Macrocycl Chem 91, 9–15 (2018). https://doi.org/10.1007/s10847-018-0791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0791-3

Keywords

Navigation