Intermolecular interactions and binding mechanism of inclusion complexation between sulfonate calix[n]arenes and ethidium bromide

Original Article
  • 7 Downloads

Abstract

In this work, the interactions between ethidium bromide (ET) and water-soluble sulfonate calix[n]arenes (n: 4, 6, and 8) were investigated by NMR, FT-IR, and fluorescence spectroscopic methods. The aim was to evaluate both the stoichiometry and the mechanism of the possible complex structure between sulfonate calix[n]arenes and ET. The spectroscopic data revealed that a 1:1 binding mode between calixarene and ET was occurred. Furthermore, thermodynamic parameters and fluorescence titration experiments were studied at different temperatures to determine both the quenching mechanism and the type of intermolecular forces in complex formation. Host–guest complexation of sulfonate calix[n]arenes and ET could be used to overcome some adverse effects related to the using of ethidium bromide during biological applications as a DNA marker treatment.

Keywords

Ethidium bromide Calixarene Inclusion complexation Fluorescence DNA marker 

References

  1. 1.
    Sayas, E., García-López, F., Serrano, R.: Toxicity, mutagenicity and transport in Saccharomyces cerevisiae of three popular DNA intercalating fluorescent dyes. Yeast 32, 595–606 (2015)CrossRefGoogle Scholar
  2. 2.
    Tettey, J.N.A., Skellern, G.G., Midgley, J.M., Grant, M.H., Wilkinson, R., Pitt, A.R.: Intracellular localization and metabolism of the phenanthridinium trypanocide, ethidium bromide, by isolated rat hepatocytes. Xenobiotica 29, 349–360 (1999)CrossRefGoogle Scholar
  3. 3.
    Farrell, R.E. Jr.: RNA Methodologies, 4th edn., pp. 179–219. Academic Press, San Diego (2010)CrossRefGoogle Scholar
  4. 4.
    Lunn, G., Sansone, E.B.: Ethidium bromide: destruction and decontamination of solutions. Anal. Biochem. 162, 453–458 (1987)CrossRefGoogle Scholar
  5. 5.
    Quillardet, P., Hofnung, M.: Ethidium bromide and safety–readers suggest alternative solutions. Trends Genet. 4, 89–90 (1988)CrossRefGoogle Scholar
  6. 6.
    Zhang, C., Liu, L., Wang, J., Rong, F., Fu, D.: Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep. Purif. Technol. 107, 91–101 (2013)CrossRefGoogle Scholar
  7. 7.
    Albelda, M.T., Frias, J.C., Espanaand, E.G., Schneider, H.J.: Supramolecular complexation for environmental control. Chem. Soc. Rev. 41, 3859–3877 (2012)CrossRefGoogle Scholar
  8. 8.
    Schneider, H.J.: Applications of Supramolecular Chemistry. CRC Press, Hoboken (2016)Google Scholar
  9. 9.
    Gutsche, C.D., Bauer, L.J.: Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. J. Am. Chem. Soc. 107, 6052–6059 (1985)CrossRefGoogle Scholar
  10. 10.
    Sayin, S., Akoz, E., Yilmaz, M.: Enhanced catalysis and enantioselective resolutionof racemic naproxen methyl ester by lipaseencapsulated within iron oxide nanoparticlescoated with calix[8]arene valeric acid complexes. Org. Biomol. Chem. 12, 6634–6642 (2014)CrossRefGoogle Scholar
  11. 11.
    Bayrakci, M., Ertul, S., Yilmaz, M.: Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. J. Incl. Phenom. Macro. 74, 293–303 (2012)CrossRefGoogle Scholar
  12. 12.
    Bayrakci, M., Ertul, S., Yilmaz, M.: Phase solubility studies of poorly soluble drugmolecules by using o-phosphorylated calixarenes as drug-solubilizing agents. J. Chem. Eng. Data. 57, 233–239 (2012)CrossRefGoogle Scholar
  13. 13.
    Bayrakci, M., Ertul, S., Yilmaz, M.: Transportation of poorly soluble drugmolecules from the organic phase to the aqueous phase by using phosphorylatedcalixarenes. J. Chem. Eng. Data. 56, 4473–4479 (2011)CrossRefGoogle Scholar
  14. 14.
    Fei, X., Zhang, Y., Zhu, S., Liu, L., Yu, L.: Spectral study and protein labeling of ınclusion complex between dye and calixarene sulfonate. Appl. Spectrosc. 67, 520–525 (2013)CrossRefGoogle Scholar
  15. 15.
    Lakowicz, J.R.: In Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)CrossRefGoogle Scholar
  16. 16.
    Agudelo, D., Beauregard, M., Bérubé, G., Tajmir-Riahi, H.-A.: Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. J. Photochem. Photobiol. B 117, 185–192 (2012)CrossRefGoogle Scholar
  17. 17.
    Gutsche, C.D., Lin, L.-G.: Calixarene 12: the synthesis of functionalized calixarene. Tetrahedron 42, 1633–1640 (1986)CrossRefGoogle Scholar
  18. 18.
    Shinkai, S., Araki, K., Tsubaki, T., Arimura, T., Manabe, O.: New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J. Chem. Soc. Perkin Trans. 1, 2297–2299 (1987)CrossRefGoogle Scholar
  19. 19.
    Bayrakci, M., Kursunlu, A.N., Guler, E., Ertul, S.: Anew calix[4]azacrown ether based boradiazaindacene (Bodipy): selective fluorescence changes towards trivalent lanthanide ions. Dyes Pigments 99, 268–274 (2013)CrossRefGoogle Scholar
  20. 20.
    Yu, G., Jie, K., Huang, F.: Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 115, 7240–7303 (2015)CrossRefGoogle Scholar
  21. 21.
    Arena, G., Casnati, A., Contino, A., Lombardo, G.G., Sciotto, D., Ungaro, R.: Water-soluble calixarene hosts that specifically recognize the trimethylammonium group or the benzene ring of aromatic ammonium cations: a combined 1H NMR, calorimetric, and molecular mechanics ınvestigation. Chem. Eur. J. 5, 738–744 (1999)CrossRefGoogle Scholar
  22. 22.
    Arena, G., Casnati, A., Mirone, L., Sciotto, D., Ungaro, R.: A new water-soluble calix[4]arene ditopic receptor rigidified by microsolvation: acid-base and inclusion properties. Tetrahedron Lett. 38, 1999–2002 (1997)CrossRefGoogle Scholar
  23. 23.
    Meric, R., Vigneron, J.P., Cesario, M., Guilhem, J., Pascard, C., Asfari, Z., Vicens, J., Lehn, J.M.: Binding of acetylcholine and other quaternary ammonium cations by sulfonated calixarenes. Crystal structure of a [choline-tetrasulfonated calix[4]arene] complex. Supramol. Chem. 5, 97–103 (1995)CrossRefGoogle Scholar
  24. 24.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn., pp. 238–264. Kluwer Academic/Plenum Publishers, New York (1999)CrossRefGoogle Scholar
  25. 25.
    Olmsted, J., Kearns, D.R.: Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry. 16, 3647–3654 (1977)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.-Z., Xiang, X., Mei, P., Dai, J., Zhang, L.-L., Liu, Y.: Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim. Acta. A 72, 907–914 (2009)CrossRefGoogle Scholar
  27. 27.
    Bano, S., Mohd, A., Khan, A.A.P., Siddiqi, K.S.: Complexation and mechanism of fluorescence quenching of telmisartan with Y(III) and Nd(III). J. Chem. Eng. Data 55, 5759–5765 (2010)CrossRefGoogle Scholar
  28. 28.
    He, L., Wang, X., Liu, B., Wang, J., Sun, Y., Gao, E., Xu, S.: Study on the interaction between promethazine hydrochloride and bovine serum albumin by fluorescence spectroscopy. J. Lumin. 131, 285–290 (2011)CrossRefGoogle Scholar
  29. 29.
    Elabd, A.A.: A new fluorescent sensor for determination of thorium by thin film of 2-(acetyloxy)-N-(5-nitro-2-thiazolyl)-benzamide embedded in sol–gel matrix. RSC Adv. 6, 45525–45532 (2016)CrossRefGoogle Scholar
  30. 30.
    Job, P.: Formation and stability of ınorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)Google Scholar
  31. 31.
    Wahba, M.E.K., El-Enanya, N., Belala, F.: Application of the stern–volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal. Methods 7, 10445–10451 (2015)CrossRefGoogle Scholar
  32. 32.
    Rasoulzadeh, F., Jabary, H.N., Naseri, A., Rashidi, M.R.: Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochim. Acta A 72, 190–193 (2009)CrossRefGoogle Scholar
  33. 33.
    Dolatabadi, J.E.N., Panahi-Azar, V., Barzegar, A., Jamali, A.A., Kheirdoosh, F., Kashanian, S., Omidi, Y.: Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Adv. 4, 64559–64564 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioengineering, Faculty of EngineeringKaramanoglu Mehmetbey UniversityKaramanTurkey

Personalised recommendations