Spectrophotometric determination of Hg(II) in water samples by dispersive liquid liquid microextraction with use ionic liquid after derivatization with a water soluble Fe(II) phthalocyanine

  • Yasemin Çağlar
  • Zekeriya Biyiklioglu
Original Article


This study reports the synthesis of water soluble iron(II) phthalocyanine and a facile method for spectrophotometric determination of Hg(II) in environmental water samples by ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME). In the method, 1-heptyl-3-methylimidazolium hexafluorophosphate (250 µL) as extraction solvent, acetonitrile (750 µL) as dispersive solvent and Triton X-100 (200 µL) as anti-sticking agent were used. After the extraction of the Hg(II) complex (Hg(II):q-Fe(II)-Pc) into thin droplets of ionic liquid, the sample was centrifuged for 4 min at 2000 rpm. The upper aqueous phase was removed and the residue diluted to 250 µL with methanol and transferred to a 250 µL cell for spectrophotometric detection at 280 nm. The linear range of the method is 0.05–1 µg/mL. The limits of detection and quantification is 0.01 and 0.03 µg/mL, respectively. The RSD for the developed method was calculated as 0.78% at 0.50 µg/mL Hg(II).


Mercury DLLME Ionic liquids Spectrophotometry Fe(II) phthalocyanine 



We are grateful for the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK). Grant Number: 115Z076.


  1. 1.
    Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P.: Global emission of mercury to the atmosphere from anthrophojenic sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499 (2010)CrossRefGoogle Scholar
  2. 2.
    Nuttal, K.L.: Interpreting mercury in blood and urine of individual patients. Ann. Clin. Lab. Sci. 34, 235–250 (2004)Google Scholar
  3. 3.
  4. 4.
    Atkins, P., Jones, L.: Chemical Principles: The Quest for Insight. W.H. Freeman and Company Press, New York (2010)Google Scholar
  5. 5.
    Bast-Pettersen, R., Ellingsen, D.G., Efskind, J., Jordskogen, R., Thomassen, Y.: A neurobehavioral study of chloralkali workers after the cessation of exposure to Hg vapor. Neuro Toxicology 26, 427–437 (2005)Google Scholar
  6. 6.
    Langworth, S., Almkvist, O., Soderman, E., Wikstrom, B.O.: Effects of occupational exposure to Hg vapour on the central nervous system. Br. J. Ind. Met. 49, 545–555 (1992)Google Scholar
  7. 7.
    Nam, D.H., Yates, D., Ardapple, P., Evers, D.C., Schmerfeld, J., Basu, N.: Elevated Hg exposure and neurochemical alterations in little browns bats (Myotis lucifigus) from a site with historical Hg contamination. Ecotoxicology 21, 1094–1101 (2012)CrossRefGoogle Scholar
  8. 8.
    Hopkins, W., Bodinof, C., Budischak, S., Perkins, C.: Nondestructive indicates of Hg exposure in three species of turtles occupying different trophic niches downstream from a former chloralkali facility. Ecotoxicology 22, 22–32 (2013)CrossRefGoogle Scholar
  9. 9.
    Neghab, M., Choobineh, A., Hassan Zadeh, J., Ghaderi, E.: Symptoms of intoxication in dentists associated with exposure to low levels of Hg. Ind. Health 49, 249–254 (2011)CrossRefGoogle Scholar
  10. 10.
    Shirkhanloo, H., Golbabaei, F., Hassani, H., Eftekhar, F., Kian, M.J.: Occupational exposure to mercury: air exposure assessment and biological monitoring based on dispersive ionic liquid–liquid microextraction. Iran. J. Public Health 43, 793–799 (2014)Google Scholar
  11. 11.
    Sarafraz-Yazdi, A., Amiri, A.: Liquid phase microextraction. Trends Anal. Chem. 29, 1–14 (2010)CrossRefGoogle Scholar
  12. 12.
    Armenta, S., Garrigues, S., de la Guardia, M.: The role of green extraction techniques in green analytical chemistry. Trends Anal. Chem. 71, 2–8 (2015)CrossRefGoogle Scholar
  13. 13.
    Pena-Pereira, F., Lavilla, I., Bendicho, C., Vidal, L., Canals, A.: Speciation of mercury by ionic-liquid based single drop microextraction combined with high performance liquid chromatography-photodiode array detection. Talanta 78, 537–541 (2009)CrossRefGoogle Scholar
  14. 14.
    Kogelnig, D., Stojanovik, A., Galanski, M., Groessl, M., Jirsa, F., Krachler, R., Keppler, B.K.: Greener synthesis of new ammonium ionic liquids and their potential as extracting agents. Tetrahedron 49, 2782–2785 (2008)CrossRefGoogle Scholar
  15. 15.
    Ojeda, C.B., Rojas, F.S.: Seperation preconcentration by dispersive liquid-liquid microextraction procedure: a review. Chromatographia 69, 1149–1159 (2009)CrossRefGoogle Scholar
  16. 16.
    Rezaee, M., Yamini, Y., Faraji, M.: Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A. 1217, 2342–2357 (2010)CrossRefGoogle Scholar
  17. 17.
    Cruz-Vera, M., Lucena, R., Cardenas, S., Valcercel, M.: Sample treatments based on dispersive (micro) extraction. Anal. Methods 3, 1719–1728 (2011)CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Lin, Q., Luo, G., Dai, Y.: Directly suspended droplet microextraction. Anal. Chim. Acta. 566, 259–264 (2006)CrossRefGoogle Scholar
  19. 19.
    Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., Berijani, S.: Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A. 1116, 1–9 (2006)CrossRefGoogle Scholar
  20. 20.
    Bidari, A., Zeini Jahromi, E., Assadi, Y., Milani Hosseini, M.R.: Monitoring of selenium in water samples using dispersive liquid–liquid microextraction followed by iridium-modified tube graphite furnace atomic absorption spectrometry. Microchem. J. 87, 6–12 (2007)CrossRefGoogle Scholar
  21. 21.
    Gharehbaghi, M., Shemirani, F., Baghdadi, M.: Dispersive liquid–liquid microextraction and spectrophotometric determination of cobalt in water samples. Int. J. Environ. Anal. Chem. 88, 513–523 (2008)CrossRefGoogle Scholar
  22. 22.
    Liang, P., Sang, H.: Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Anal. Biochem. 380, 21–25 (2008)CrossRefGoogle Scholar
  23. 23.
    Liang, P., Peng, L., Yan, P.: Speciation of As(III) and As(V) in water samples by dispersive liquid–liquid microextraction separation and determination by graphite furnace atomic absorption spectrometry. Microchim. Acta. 166, 47–52 (2009)CrossRefGoogle Scholar
  24. 24.
    Biyiklioğlu, Z.: New water soluble and amphiphilic titanium(IV) phthalocyanines and investigation of electropolymerization properties. J. Organomet. Chem. 752, 59–66 (2014)CrossRefGoogle Scholar
  25. 25.
    Sun, J.-N., Chen, J., Shi, Y.-P.: Multiple functional ionic liquids based dispersive liquid–liquid microextraction combined with high performance chromatography for the determination of phenolic compounds in water samples. Talanta 125, 329–335 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhou, Q., Bai, H., Xie, G., Xiao, J.: Temprature-controlled Ionic liquid dispersive liquid phase micro-extractin. J. Choromatogr. A. 1177, 43–49 (2008)CrossRefGoogle Scholar
  27. 27.
    Li, Y., Zhang, J., Peng, B., Li, S., Gao, H., Zhou, W.: Determination of triazole pesticides in rat blood by the combination of ultrasound-enhanced temprature-controlled ionic liquid dispersive liquid–liquid mcroextraction coupled to high-performance liquid chromatography. Anal. Methods 5, 2241–2248 (2013)CrossRefGoogle Scholar
  28. 28.
    Gharehbaghi, M., Shemirani, F., Bagdadi, M.: Dispersive liquid–liquid microextraction based on ionic liquid and spectrophotometric determination of mercury in water samples. J. Environ. Anal. Chem. 89, 21–33 (2009)CrossRefGoogle Scholar
  29. 29.
    Sanagi, M.M., Abbas, H.H., İbrahim, W.A.W., Aboul-Enien, H.Y.: Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. Food Chem. 133, 557–562 (2012)CrossRefGoogle Scholar
  30. 30.
    Kocúrová, L., Balogh, I.S., Śandrejová, J., Andruch, V.: Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchem. J. 102, 11–17 (2012)CrossRefGoogle Scholar
  31. 31.
    Farajzadeh, M.A., Bahram, M., Mehr, B.G., Jönsson, J.A.: Optimization of dispersive liquid–liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples. Talanta 75, 832–840 (2008)CrossRefGoogle Scholar
  32. 32.
    Kandhro, G.A., Soylak, M., Kazi, T.G., Yilmaz, E., Afridi, H.I.: Room temperature ionic liquid-based microextraction for pre-concentration of cadmium and copper from biological samples and determination by FAAS. At. Spectrosc. 33, 166–172 (2012)Google Scholar
  33. 33.
    Lemos, V.A., Dos Santoz, L.O., Dos Santoz Silva, E., Dos Santoz Vieira, E.V. : Spectrophotometric determination of mercury in water samples after preconcentration using dispersive liquid–liquid microextraction. J. AOAC Int. 95, 227–231 (2012)CrossRefGoogle Scholar
  34. 34.
    Gao, Z., Ma, X.: Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Anal. Chim. Acta. 702, 50–55 (2011)CrossRefGoogle Scholar
  35. 35.
    Hossien-poor-Zaryabi, M., Chamsaz, M., Heidari, T., Zavar, M.H.A., Behbahani, M., Salarian, M.: Application of dispersive liquid–liquid micro-extraction using mean centering of ratio spectra method for trace determination of mercury in food and environmental samples. Food Anal. Methods 7, 352–359 (2014)CrossRefGoogle Scholar
  36. 36.
    Mohammadi, S.Z., Afzali, D., Baghelani, Y.M.: Ligandless-dispersive liquid–liquid microextraction of trace amount of copper ions. Anal. Chim. Acta. 653, 173–177 (2009)CrossRefGoogle Scholar
  37. 37.
    Shokoufi, N., Shemirani, F., Assadi, Y.: Fiber optic linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal. Chim. Acta. 597, 349–356 (2007)CrossRefGoogle Scholar
  38. 38.
    Citak, D.M.: Tuzen Seperation and determination of copper in bottled water samples by combination of dispersive liquid–liquid microextraction and microsample introduction flame atomic absorption spectrometry. J. AOAC Int. 96, 1435–1444 (2013)CrossRefGoogle Scholar
  39. 39.
    Asghari, A., Ghazaghi, M., Rajabi, M., Behzad, M., Ghaedi, M.: Ionic liquid-based dispersive liquid–liquid microextraction combined with high performance liquid chromatography-UV detection for simultaneous preconcentration and determination of Ni, Co, Cu and Zn in water samples. J. Serbian Chem. Soc. 79, 63–76 (2014)CrossRefGoogle Scholar
  40. 40.
    Baghdadi, M., Shemirani, F.: Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal. Chim. Acta. 613, 56–63 (2008)CrossRefGoogle Scholar
  41. 41.
    Çağlar, Y., Gümrükçüoğlu, N., Saka, E.T., Ocak, M., Kantekin, H., Ocak, Ü: Phthalocyanine based fluorescent chemosensor for the sensing of Zn(II) in dimethyl sulfoxide-acetonitrile. J. Incl. Phenom. Macrocycl. Chem. 72, 443–447 (2012)CrossRefGoogle Scholar
  42. 42.
    Günsel, A., Bilgiçli, A.T., Kandaz, M., Orman, E.B., Özkaya, A.Z.: Ag(I) and Pd(II) sensing, H- or J-aggregation and redox propertiesof metal-free, manganase(III) and gallium(III) phthalocyanines. Dyes Pigments 102, 169–179 (2014)CrossRefGoogle Scholar
  43. 43.
    Çağlar, Y., Saka, E.T., Alp, H., Kantekin, H., Ocak, Ü, Ocak, M.: A simple spectrofluorimetric method based on Qquenching of a nickel(II)-phthalocyanine complex to determine Iron (III). J. Fluoresc. 26, 1381–1389 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetic and BioengineeringGiresun UniversityGiresunTurkey
  2. 2.Department of ChemistryKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations