Skip to main content
Log in

Designing of calixarene based drug carrier for dasatinib, lapatinib and nilotinib using multilevel molecular docking and dynamics simulations

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Herein, an in-silico attempt was made to improve the pharmacological profile of second generation tyrosine kinase inhibitors (TKI’s) viz. dasatinib, lapatinib and nilotinib by forming their host–guest inclusion complexes with calixarene. We have investigated the energetics and binding behaviour of TKI’s with upper rim functionalised calix[n]arenes (n = 4,5,6 and 8) via appended groups (R=SO3H, tert-Butyl, iso-Propyl, COOH, C2H5OH, and C2H5NH2). For this, multilevel molecular docking approach with shape based fitting algorithms (Patchdock/Firedock and HexServer) followed by semiemperical PM3 calculations were employed to generate structural mode of complexes. Further, based on interaction energies and their structural integrity (dynamics behaviour), we concluded that the proposed drug carrier (host) for nilotinib (C2H5SO3H-calix[4]arene, and isopropyl/C2H5NH2-calix[8]arene), dasatinib (C2H5SO3H-calix[5]arene, C2H5COOH-calix[6]arene, tert-butyl-calix[6]arene) and lapatinib (C2H5SO3H/C2H5COOH-calix[6]arene and C2H5COOH-calix[8]arene) have the greater capability to form optimal complexes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arora, A., Scholar, E.M.: Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 315(3), 971–979 (2005). https://doi.org/10.1124/jpet.105.084145

    Article  CAS  Google Scholar 

  2. Pawson, T.: Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer 38(Suppl 5), S3–S10 (2002)

    Article  Google Scholar 

  3. Cohen, M.H., Williams, G.A., Sridhara, R., Chen, G., Pazdur, R.: FDA drug approval summary: gefitinib (ZD1839)(Iressa®) tablets. The Oncologist. 8(4), 303–306 (2003)

    Article  CAS  Google Scholar 

  4. FDA, U.: Gefitinib (marketed as Iressa) Information. https://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm110473.htm (2015) Accessed 15 July 2015

  5. Onakpoya, I.J., Heneghan, C.J., Aronson, J.K.: Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 14(1), 10 (2016)

    Article  Google Scholar 

  6. Chapuy, B., Panse, M., Radunski, U., Koch, R., Wenzel, D., Inagaki, N., Haase, D., Truemper, L., Wulf, G.G.: ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 94(11), 1528–1536 (2009)

    Article  CAS  Google Scholar 

  7. Takahashi, N., Miura, M., Scott, S.A., Kagaya, H., Kameoka, Y., Tagawa, H., Saitoh, H., Fujishima, N., Yoshioka, T., Hirokawa, M.: Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J. Hum. Genet. 55(11), 731–737 (2010)

    Article  CAS  Google Scholar 

  8. van Erp, N.P., Gelderblom, H., Guchelaar, H.-J.: Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat. Rev. 35(8), 692–706 (2009)

    Article  Google Scholar 

  9. Athar, M., Lone, M.Y., Jha, P.C.: First protein drug target’s appraisal of lead-likeness descriptors to unfold the intervening chemical space. J. Mol. Graph. Model. 72, 272–282 (2017)

    Article  CAS  Google Scholar 

  10. Yang, Y.-W., Sun, Y.-L., Song, N.: Switchable host–guest systems on surfaces. Acc. Chem. Res. 47(7), 1950–1960 (2014)

    Article  CAS  Google Scholar 

  11. Galindo-Murillo, R., Sandoval-Salinas, M.E., Barroso-Flores, J.: In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix-and thiacalix [n] arene host molecules: a DFT and molecular dynamics study. J. Chem. Theory Comput. 10(2), 825–834 (2014)

    Article  CAS  Google Scholar 

  12. de Fátima, Â, Fernandes, S.A., Sabino, A.A.: Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol. 6(2), 151–170 (2009)

    Article  Google Scholar 

  13. Mutihac, L., Buschmann, H.-J., Mutihac, R.-C., Schollmeyer, E.: Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 51(1–2), 1–10 (2005)

    Article  CAS  Google Scholar 

  14. Mohammed-Ziegler, I., Grün, A.: Complex formation between aliphatic amines and chromogenic calix[4]arene derivatives studied by FT-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62(1), 506–517 (2005)

    Article  Google Scholar 

  15. Fehlinger, M., Abraham, W.: Calix[4]arenes bearing a tropylium substituent as hosts for organic cations. J. Incl. Phenom. Macrocycl. Chem. 58(3–4), 263–274 (2007)

    Article  CAS  Google Scholar 

  16. de Namor, A.F.D., Pugliese, A., Casal, A.R., Llerena, M.B., Aymonino, P.J., Velarde, F.J.S.: The various factors involved in the extraction of alkali metal picrates by calixarene ester derivatives in the mutually saturated water—dichloromethane solvent system. Phys. Chem. Chem. Phys. 2(19), 4355–4360 (2000)

    Article  Google Scholar 

  17. Gutsche, C.D.: Calixarenes revisited. Royal Society of Chemistry, Cambridge (1998)

    Google Scholar 

  18. Perret, F., Coleman, A.W.: Biochemistry of anionic calix[n]arenes. Chem. Commun. 47(26), 7303–7319 (2011)

    Article  CAS  Google Scholar 

  19. Shinkai, S.: Calixarenes as new functionalized host molecules. Pure Appl. Chem. 58(11), 1523–1528 (1986)

    Article  CAS  Google Scholar 

  20. Patel, M.B., Valand, N.N., Modi, N.R., Joshi, K.V., Harikrishnan, U., Kumar, S.P., Jasrai, Y.T., Menon, S.K.: Effect of p-sulfonatocalix [4] resorcinarene (PSC [4] R) on the solubility and bioavailability of a poorly water soluble drug lamotrigine (LMN) and computational investigation. RSC Adv. 3(36), 15971–15981 (2013)

    Article  CAS  Google Scholar 

  21. Panchal, J.G., Patel, R.V., Menon, S.K.: Preparation and physicochemical characterization of carbamazepine (CBMZ): para-sulfonated calix[n]arene inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 67(1–2), 201–208 (2010)

    Article  CAS  Google Scholar 

  22. Yang, W., Otto, D.P., Liebenberg, W., de Villiers, M.M.: Effect of para-sulfonato-calix[n]arenes on the solubility, chemical stability, and bioavailability of a water insoluble drug nifedipine. Curr. Drug Discov. Technol. 5(2), 129–139 (2008)

    Article  CAS  Google Scholar 

  23. Ferguson, S.B., Sanford, E.M., Seward, E.M., Diederich, F.: Cyclophane-arene inclusion complexation in protic solvents: solvent effects versus electron donor-acceptor interactions. J. Am. Chem. Soc. 113(14), 5410–5419 (1991)

    Article  CAS  Google Scholar 

  24. Athar, M., Lone, M.Y., Jha, P.C.: Theoretical assessment of calix[n]arene as drug carriers for second generation tyrosine kinase inhibitors. J Mol. Liq. 247(Supplement C), 448–455 (2017)

    Article  CAS  Google Scholar 

  25. Wheate, N.J., Abbott, G.M., Tate, R.J., Clements, C.J., Edrada-Ebel, R., Johnston, B.F.: Side-on binding of p-sulphonatocalix [4] arene to the dinuclear platinum complex trans-[{PtCl (NH 3) 2} 2 μ-dpzm] 2+ and its implications for anticancer drug delivery. J. Inorg. Biochem. 103(3), 448–454 (2009)

    Article  CAS  Google Scholar 

  26. Seridi, L., Boufelfel, A., Soltani, S.: Structural, electronic and QTAIM analysis of host-guest interaction of Warfarin with β-cyclodextrin and calix[4]arene. J. Mol. Liq. 221, 885–895 (2016)

    Article  CAS  Google Scholar 

  27. Galindo-Murillo, R., Aguilar-Suárez, L.E., Barroso-Flores, J.: A mixed DFT-MD methodology for the in silico development of drug releasing macrocycles. Calix and thia-calix[N]arenes as carriers for Bosutinib and Sorafenib. J. Comput. Chem. 37(10), 940–946 (2015)

    Article  Google Scholar 

  28. Millership, J.S.: A preliminary investigation of the solution complexation of 4-sulphonic calix[n]arenes with testosterone. J Incl. Phenom. Macrocycl. Chem. 39(3–4), 327–331 (2001)

    Article  CAS  Google Scholar 

  29. Yang, W., de Villiers, M.M.: Effect of 4-sulphonato-calix[n]arenes and cyclodextrins on the solubilization of niclosamide, a poorly water soluble anthelmintic. AAPS J. 7(1), E241–E248 (2005)

    Article  CAS  Google Scholar 

  30. Yang, W., Villiers, M.M.: Aqueous solubilization of furosemide by supramolecular complexation with 4-sulphonic calix[n]arenes. J Pharm. Pharmacol. 56(6), 703–708 (2004)

    Article  CAS  Google Scholar 

  31. Yang, W., de Villiers, M.M.: The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix[n]arenes. Eur. J. Pharm. Biopharm. 58(3), 629–636 (2004)

    Article  CAS  Google Scholar 

  32. Song, J., Li, H., Chao, J., Dong, C., Shuang, S.: Spectroscopic studies on the inclusion interaction of p-sulfonatocalix[6]arene with vitamin B6. J. Incl. Phenom. Macrocycl. Chem. 72(3–4), 389–395 (2012)

    Article  CAS  Google Scholar 

  33. Wang, X., Luo, C., Lv, Z., Lu, F.: Investigation of the inclusion behavior between p-sulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy. J. Lumin. 131(9), 1986–1990 (2011)

    Article  CAS  Google Scholar 

  34. Xue, Y., Guan, Y., Zheng, A., Xiao, H.: Amphoteric calix[8]arene-based complex for pH-triggered drug delivery. Colloids Surf. B 101, 55–60 (2013)

    Article  CAS  Google Scholar 

  35. Panchal, M., Athar, M., Jha, P., Kongor, A., Mehta, V., Bhatt, K., Jain, V.: Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene. RSC Adv. 6(58), 53573–53577 (2016)

    Article  CAS  Google Scholar 

  36. Mehta, V., Athar, M., Jha, P., Panchal, M., Modi, K., Jain, V.: Efficiently functionalized oxacalix[4]arenes: synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors. Bioorgan. Med. Chem. Lett. 26(3), 1005–1010 (2016)

    Article  CAS  Google Scholar 

  37. Panchal, M., Athar, M., Jha, P., Kongor, A., Mehta, V., Jain, V.: Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu2+ ions: a combined experimental and DFT study. J. Lumin. 192, 256–262 (2017)

    Article  CAS  Google Scholar 

  38. Mehta, V., Athar, M., Jha, P., Kongor, A., Panchal, M., Jain, V.: A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies. New J. Chem. 41, 5125–5132 (2017). https://doi.org/10.1039/C7NJ0111C

    Article  CAS  Google Scholar 

  39. Athar, M., Lone, M.Y., Jha, P.C.: Investigation of structure and conformational equilibrium of Oxacalix[4]arene: a density functional theory approach. J. Mol. Liq. 237, 473–483 (2017). https://doi.org/10.1016/j.molliq.2017.04.065

    Article  CAS  Google Scholar 

  40. Panchal, M.K., Kongor, A., Athar, M., Mehta, V.A., Jha, P.C., Jain, V.K.: Sensing of Ce(III) using di-naphthoylated oxacalix[4]arene via realistic simulations and experimental studies. New J. Chem. (2017). https://doi.org/10.1039/C7NJ02828H

    Google Scholar 

  41. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic acids Res. 42(D1), D1091–D1097 (2014)

    Article  Google Scholar 

  42. Version, A.D.S.: 4.0, Accelrys, San Diego, USA In.

  43. Cheng, A., Merz, K.M.: Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. J. Med. Chem. 46(17), 3572–3580 (2003)

    Article  CAS  Google Scholar 

  44. Egan, W.J., Lauri, G.: Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 54(3), 273–289 (2002)

    Article  CAS  Google Scholar 

  45. Egan, W.J., Merz, K.M., Baldwin, J.J.: Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43(21), 3867–3877 (2000)

    Article  CAS  Google Scholar 

  46. Susnow, R.G., Dixon, S.L.: Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J. Chem. Inf. Comput. Sci. 43(4), 1308–1315 (2003)

    Article  CAS  Google Scholar 

  47. Xia, X., Maliski, E.G., Gallant, P., Rogers, D.: Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 47(18), 4463–4470 (2004)

    Article  CAS  Google Scholar 

  48. Dixon, S.L., Merz, K.M.: One-dimensional molecular representations and similarity calculations: methodology and validation. J. Med. Chem. 44(23), 3795–3809 (2001)

    Article  CAS  Google Scholar 

  49. Votano, J.R., Parham, M., Hall, L.M., Hall, L.H., Kier, L.B., Oloff, S., Tropsha, A.: QSAR modeling of human serum protein binding with several modeling techniques utilizing structure—information representation. J. Med. Chem. 49(24), 7169–7181 (2006)

    Article  CAS  Google Scholar 

  50. Andreetti, G.D., Ungaro, R., Pochini, A.: Crystal and molecular structure of cyclo {quater [(5-t-butyl-2-hydroxy-1, 3-phenylene) methylene]} toluene (1: 1) clathrate. J. Chem. Soc. Chem. Commun. (22), 1005–1007 (1979)

  51. Coruzzi, M., Andreetti, G.D., Bocchi, V., Pochini, A., Ungaro, R.: Molecular inclusion in functionalized macrocycles. Part 5. The crystal and molecular structure of 25, 26, 27, 28, 29-pentahydroxycalix[5]arene–acetone (1:2) clathrate. J. Chem. Soc. Perkin Trans. 2(9), 1133–1138 (1982)

    Article  Google Scholar 

  52. Halit, M., Oehler, D., Perrin, M., Thozet, A., Perrin, R., Vicens, J., Bourakhouadar, M.: Crystal and molecular structure of two calix[6]arenes: p-Isopropylcalix[6]arene and p-tert-butylcalix[6]arene—benzene (1∶3) complex. J. Incl. Phenom. 6(6), 613–623 (1988)

    Article  CAS  Google Scholar 

  53. Gutsche, C.D., Gutsche, A.E., Karaulov, A.I.: Calixarenes 11. Crystal and molecular structure ofp-tert-butylcalix[8]arene. J. Incl. Phenom. 3(4), 447–451 (1985)

    Article  CAS  Google Scholar 

  54. Allen, F.H.: The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 58(3), 380–388 (2002)

    Article  Google Scholar 

  55. Bernardino, R.J., Cabral, B.J.C.: Structure and conformational equilibrium of thiacalix[4]arene by density functional theory. J. Mol. Struct. (Thoechem). 549(3), 253–260 (2001)

    Article  CAS  Google Scholar 

  56. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids Res. 33(suppl 2), W363–W367 (2005)

    Google Scholar 

  57. Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., Wolfson, H.J.: FireDock: a web server for fast interaction refinement in molecular docking. Nucleic acids Res. 36(suppl 2), W229–W232 (2008)

    Google Scholar 

  58. Ritchie, D.W., Venkatraman, V.: Ultra-fast FFT protein docking on graphics processors. Bioinformatics. 26(19), 2398–2405 (2010)

    Article  CAS  Google Scholar 

  59. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16(5), 548–558 (1983)

    Article  CAS  Google Scholar 

  60. Zhang, C., Vasmatzis, G., Cornette, J.L., DeLisi, C.: Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol. 267(3), 707–726 (1997)

    Article  CAS  Google Scholar 

  61. Stewart, J.J.: Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10(2), 209–220 (1989)

    Article  CAS  Google Scholar 

  62. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision B.01, Wallingford CT, (2009)

  63. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC 2006 Conference, Proceedings of the ACM/IEEE, pp. 43–43. IEEE, Tampa, 11–17 November 2006

  64. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  CAS  Google Scholar 

  65. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 105(28), 6474–6487 (2001)

    Article  CAS  Google Scholar 

  66. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31(3), 1695 (1985)

    Article  CAS  Google Scholar 

  67. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J Chem. Phys. 103(19), 8577–8593 (1995)

    Article  CAS  Google Scholar 

  68. Geyer, C.E., Forster, J., Lindquist, D., Chan, S., Romieu, C.G., Pienkowski, T., Jagiello-Gruszfeld, A., Crown, J., Chan, A., Kaufman, B.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355(26), 2733–2743 (2006)

    Article  CAS  Google Scholar 

  69. Kantarjian, H., Giles, F., Wunderle, L., Bhalla, K., O’brien, S., Wassmann, B., Tanaka, C., Manley, P., Rae, P., Mietlowski, W.: Nilotinib in imatinib-resistant CML and Philadelphia chromosome—positive ALL. N. Engl. J. Med. 354(24), 2542–2551 (2006)

    Article  Google Scholar 

  70. Talpaz, M., Shah, N.P., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O’brien, S., Nicaise, C., Bleickardt, E.: Dasatinib in imatinib-resistant Philadelphia chromosome—positive leukemias. N. Engl. J. Med. 354(24), 2531–2541 (2006)

    Article  CAS  Google Scholar 

  71. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nat. Chem. 4(2), 90–98 (2012)

    Article  CAS  Google Scholar 

  72. Krause-Heuer, A.M., Wheate, N.J., Tilby, M.J., Pearson, D.G., Ottley, C.J., Aldrich-Wright, J.R.: Substituted β-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators. Inorg. Chem. 47(15), 6880–6888 (2008)

    Article  CAS  Google Scholar 

  73. Alvira, E., Mayoral, J., Garcia, J.: Molecular modelling study of β-cyclodextrin inclusion complexes. Chem. Phys. Lett. 271(1–3), 178–184 (1997)

    Article  CAS  Google Scholar 

  74. Bodor, N., Huang, M.-J., Watts, J.D.: Theoretical AM1 studies of inclusion complexes of α-and β-cyclodextrins with methylated benzoic acids and phenol, and γ-cyclodextrin with buckminsterfullerene. In: Proceedings of the Eighth International Symposium on Cyclodextrins, pp. 209–214. Springer, Dordrecht, 1996

  75. Huang, M.J., Watts, J.D., Bodor, N.: Theoretical studies of inclusion complexes of β-cyclodextrin with methylated benzoic acids. Int. J. Quantum Chem. 64(6), 711–719 (1997)

    Article  CAS  Google Scholar 

  76. Pan, G.B., Liu, J.M., Zhang, H.M., Wan, L.J., Zheng, Q.Y., Bai, C.L.: Configurations of a calix[8]arene and a C60/calix[8]arene complex on a Au (111) surface. Angew. Chem. Int. Ed. 42(24), 2747–2751 (2003)

    Article  CAS  Google Scholar 

  77. Specht, A., Bernard, P., Goeldner, M., Peng, L.: Mutually induced formation of host–guest complexes between p-Sulfonated calix[8]arene and photolabile cholinergic ligands. Angew. Chem. Int. Ed. 41(24), 4706–4708 (2002)

    Article  CAS  Google Scholar 

  78. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  CAS  Google Scholar 

  79. Galindo-Murillo, R., Olmedo-Romero, A., Cruz-Flores, E., Petrar, P., Kunsagi-Mate, S., Barroso-Flores, J.: Calix[n]arene-based drug carriers: a DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Comput. Theor. Chem. 1035, 84–91 (2014)

    Article  CAS  Google Scholar 

  80. Veber, D.F., Johnson, S.R., Cheng, H.-Y., Smith, B.R., Ward, K.W., Kopple, K.D.: Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45(12), 2615–2623 (2002)

    Article  CAS  Google Scholar 

  81. Desiraju, G.R.: Chemistry beyond the molecule. Nature. 412(6845), 397–400 (2001)

    Article  CAS  Google Scholar 

  82. Athar, M., Kongor, A., Panchal, M., Jha, P.C., Jain, V.: Entrapment of toxic anions using calixarenes framework. MOJ Toxicol 3(6), 74 (2017)

Download references

Acknowledgements

This work was supported by Department of Science & Technology (DST), New Delhi under INSPIRE-SRF grant awarded to Mohd Athar. Prakash C. Jha would also like to thank UGC for start-up grants. The authors also acknowledge Central University of Gujarat-Gandhinagar (CUG) for providing basic infrastructure and facilities.

Funding

The funding was provided by Science and Engineering Research Board (SERB) and DST INSPIRE Fellowship (Grant No. IF150167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3960 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athar, M., Lone, M.Y. & Jha, P.C. Designing of calixarene based drug carrier for dasatinib, lapatinib and nilotinib using multilevel molecular docking and dynamics simulations. J Incl Phenom Macrocycl Chem 90, 157–169 (2018). https://doi.org/10.1007/s10847-017-0773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0773-x

Keywords

Navigation