Skip to main content
Log in

Current trends in molecular modeling methods applied to the study of cyclodextrin complexes

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this review the authors present an overview of different molecular modeling campaigns dealing with the study and characterization of cyclodextrins (CDs) inclusion complexes with applicability to diverse biomedical and technological domains. The aim of this review is to present in a concise manner the new tendencies towards CDs molecular modeling studies in the context of a scientific computing era characterized by detailed and exhaustively validated molecular modeling protocols combined with and enormous and continuously growing computing power. Therefore, the present review covers research efforts reported in the last 5 years, including the simulation of native and modified CDs in a new and more detailed manner than what was possible in the past as well as their inclusion complexes with bioactive molecules studied by detailed protocols and exhaustive free-energy of binding calculations. Also, particular emphasis is devoted to the molecular modeling simulation of CDs included as part of drug delivery matrixes and intelligent nanodevices such as CD-based molecular motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014)

    Article  CAS  Google Scholar 

  2. Sharma, N., Baldi, A.: Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 23(3), 729–747 (2016)

    CAS  Google Scholar 

  3. Iacovino, R., V Caso, J., Di Donato, C., Malgieri, G., Palmieri, M., Russo, L., Isernia, C.: Cyclodextrins as complexing agents: preparation and applications. Curr. Org. Chem. 21(2), 162–176 (2017)

    Article  CAS  Google Scholar 

  4. Adeoye, O., Cabral-Marques, H.: Cyclodextrin nanosystems in oral drug delivery: a mini review. Int. J. Pharmaceut. 531(2), 521–531 (2017)

    Article  CAS  Google Scholar 

  5. Barbour, L.: Experimental and computational methods in supramolecular chemistry. In: Gokel, G. W., Barbour, L. (eds.) Comprehensive Supramolecular Chemistry II, vol. 2. Elsevier, United Kingdom (2017)

    Google Scholar 

  6. Atwood, J.L., Lehn, J.M.: Comprehensive Supramolecular Chemistry: Cyclodextrins. Pergamon, Oxford (1996)

    Google Scholar 

  7. Jensen, J.H.: Molecular Modeling Basics. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  8. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer, New York (2013)

    Google Scholar 

  9. Castro, E., Barbiric, D.: Molecular modeling and cyclodextrins: a relationship strengthened by complexes. Curr. Org. Chem. 10(7), 715–729 (2006)

    Article  CAS  Google Scholar 

  10. Davies, J.: Spectroscopic and computational studies of supramolecular systems, vol. 4. Springer, London (2013)

    Google Scholar 

  11. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98(5), 1829–1873 (1998)

    Article  CAS  Google Scholar 

  12. Zhao, Q., Zhang, W., Wang, R., Wang, Y., Ouyang, D.: Research advances in molecular modeling in cyclodextrins. Curr. Pharm. Design. 23(3), 522–531 (2017)

    CAS  Google Scholar 

  13. Snir, M.: The future of supercomputing. In: Proceedings of the 2028th ACM International Conference on Supercomputing 14, pp. 261–262, ACM

  14. Xie, X., Fang, X., Hu, S., Wu, D.: Evolution of supercomputers. Front. Comput. Sci. China 4(4), 428–436 (2010)

    Article  Google Scholar 

  15. Maximova, T., Moffatt, R., Ma, B., Nussinov, R., Shehu, A.: Principles and overview of sampling methods for modeling macromolecular structure and dynamics. PLoS Comput. Biol. 12(4), e1004619 (2016)

    Article  CAS  Google Scholar 

  16. Lameira, J., Kupchencko, I., Warshel, A.: Enhancing paradynamics for QM/MM sampling of enzymatic reactions. J. Phys. Chem. B 120(9), 2155–2164 (2016)

    Article  CAS  Google Scholar 

  17. Cai, Y., See, S.: GPU Computing and Applications. Springer, Singapore (2015)

    Book  Google Scholar 

  18. Ren, B., Zhang, M., Gao, H., Zheng, J., Jia, L.: Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation. Phys. Chem. Chem. Phys. 18(26), 17380–17388 (2016)

    Article  CAS  Google Scholar 

  19. Cerón-Carrasco, J.P., den-Haan, H., Peña-García, J., Contreras-García, J., Pérez-Sánchez, H.: Exploiting the cyclodextrins ability for antioxidants encapsulation: a computational approach to carnosol and carnosic acid embedding. Comput. Theor. Chem. 1077, 65–73 (2016)

    Article  CAS  Google Scholar 

  20. Pagadala, N.S., Syed, K., Tuszynski, J.: Software for molecular docking: a review. Biophys. Rev. 9(2), 91–102 (2017)

    Article  CAS  Google Scholar 

  21. Suárez, D., Díaz, N.: Conformational and entropy analyses of extended molecular dynamics simulations of α-, β-and γ-cyclodextrins and of the β-cyclodextrin/nabumetone complex. Phys. Chem. Chem. Phys. 19(2), 1431–1440 (2017)

    Article  CAS  Google Scholar 

  22. Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9(9), 3878–3888 (2013)

    Article  CAS  Google Scholar 

  23. Salomon-Ferrer, R., Case, D.A., Walker, R.C.: An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. 3(2), 198–210 (2013)

    CAS  Google Scholar 

  24. Ivanov, P.: Further studies on the conformations of large-ring cyclodextrins. Bulg. Chem. Commun. 46(A), 238–245 (2014)

    Google Scholar 

  25. Assaf, K.I., Gabel, D., Zimmermann, W., Nau, W.M.: High-affinity host-guest chemistry of large-ring cyclodextrins. Org. Biomol. Chem. 14(32), 7702–7706 (2016)

    Article  CAS  Google Scholar 

  26. Ellouze, F., Ben Amar, N., Deratani, A.: Large ring cyclodextrins: synthesis, purification and applications. C. R. Chim. 14(10), 967–971 (2011)

    Article  CAS  Google Scholar 

  27. Ivanov, P., Atanassov, E., Jaime, C.: Computational study on the conformations of CD38 and inclusion complexes of some lower-size large-ring cyclodextrins. J. Mol. Struct. 1056, 238–245 (2014)

    Article  CAS  Google Scholar 

  28. Khuntawee, W., Rungrotmongkol, T., Wolschann, P., Pongsawasdi, P., Kungwan, N., Okumura, H., Hannongbua, S.: Conformation study of ε-cyclodextrin: Replica exchange molecular dynamics simulations. Carbohyd. Polym. 141, 99–105 (2016)

    Article  CAS  Google Scholar 

  29. Crich, D.: Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates. Wiley, Weinheim (2013)

    Google Scholar 

  30. Alvarez-Dorta, D., León, E.I., Kennedy, A.R., Martín, A., Pérez-Martín, I., Suárez, E.: Easy access to modified cyclodextrins by an intramolecular radical approach. Angew. Chem. Int. Ed. 54(12), 3674–3678 (2015)

    Article  CAS  Google Scholar 

  31. Cheng, G.-J., Zhang, X., Chung, L.W., Xu, L., Wu, Y.-D.: Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J. Am. Chem. Soc. 137(5), 1706–1725 (2015)

    Article  CAS  Google Scholar 

  32. Shityakov, S., Salmas, R.E., Durdagi, S., Salvador, E., Pápai, K., Yáñez-Gascón, M.J., Pérez-Sánchez, H., Puskás, I., Roewer, N., Förster, C.: Characterization, in vivo evaluation, and molecular modeling of different propofol–cyclodextrin complexes to assess their drug delivery potential at the blood–brain barrier level. J. Chem. Inf. Model. 56(10), 1914–1922 (2016)

    Article  CAS  Google Scholar 

  33. Kirschner, K.N., Yongye, A.B., Tschampel, S.M., González-Outeiriño, J., Daniels, C.R., Foley, B.L., Woods, R.J.: GLYCAM06: a generalizable biomolecular force field. Carbohydr. J. Comput. Chem. 29(4), 622–655 (2008)

    Article  CAS  Google Scholar 

  34. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)

    Article  CAS  Google Scholar 

  35. Devasari, N., Dora, C.P., Singh, C., Paidi, S.R., Kumar, V., Sobhia, M.E., Suresh, S.: Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohyd. Polym. 134, 547–556 (2015)

    Article  CAS  Google Scholar 

  36. Shityakov, S., Puskás, I., Pápai, K., Salvador, E., Roewer, N., Förster, C., Broscheit, J.-A.: Sevoflurane-sulfobutylether-β-cyclodextrin complex: preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies. Molecules 20(6), 10264–10279 (2015)

    Article  CAS  Google Scholar 

  37. Kulkarni, A.D., Belgamwar, V.S.: Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity. J. Mol. Struct. 1128, 563–571 (2017)

    Article  CAS  Google Scholar 

  38. Yildiz, Z.I., Celebioglu, A., Uyar, T.: Polymer-free electrospun nanofibers from sulfobutyl ether 7-beta-cyclodextrin (SBE 7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole. Int. J. Pharmaceut. 531(2), 550–558 (2017)

    Article  CAS  Google Scholar 

  39. Altarsha, M., Ingrosso, F., Ruiz-López, M.F.: Cavity closure dynamics of peracetylated β-cyclodextrins in supercritical carbon dioxide. J. Phys. Chem. B 116(13), 3982–3990 (2012)

    Article  CAS  Google Scholar 

  40. Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97(40), 10269–10280 (1993)

    Article  CAS  Google Scholar 

  41. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  CAS  Google Scholar 

  42. Kordopati, G.G., Tselios, T.V., Kellici, T., Merzel, F., Mavromoustakos, T., Grdadolnik, S.G., Tsivgoulis, G.M.: A novel synthetic luteinizing hormone-releasing hormone (LHRH) analogue coupled with modified β-cyclodextrin: insight into its intramolecular interactions. Biochim. Biophys. Acta 1850(1), 159–168 (2015)

    Article  CAS  Google Scholar 

  43. Wang, R., Zhou, H., Siu, S.W., Gan, Y., Wang, Y., Ouyang, D.: Comparison of three molecular simulation approaches for cyclodextrin-ibuprofen complexation. J. Nanomater. 16(1), 267 (2015)

    Google Scholar 

  44. Sheng Cai, W., Wang, T., Zhe Liu, Y., Liu, P., Chipot, C., Guang Shao, X.: Free energy calculations for cyclodextrin inclusion complexes. Curr. Org. Chem. 15(6), 839–847 (2011)

    Article  Google Scholar 

  45. Sangpheak, W., Khuntawee, W., Wolschann, P., Pongsawasdi, P., Rungrotmongkol, T.: Enhanced stability of a naringenin/2, 6-dimethyl β-cyclodextrin inclusion complex: molecular dynamics and free energy calculations based on MM-and QM-PBSA/GBSA. J. Mol. Graph. Model. 50, 10–15 (2014)

    Article  CAS  Google Scholar 

  46. Rutenberg, R., Leitus, G., Fallik, E., Poverenov, E.: Discovery of a non classic host guest complexation mode in a β-cyclodextrin/propionic acid model. Chem. Commun. 52(12), 2565–2568 (2016)

    Article  CAS  Google Scholar 

  47. Rahim, M., Madi, F., Nouar, L., Haiahem, S., Fateh, D., Khatmi, D.: β-Cyclodextrin Interaction with Edaravone: Molecular Modeling Study. Proceedings of MEST 2012: Electronic Structure Methods with Applications to Experimental Chemistry, vol. 68, pp. 269–278 (2014)

  48. Onnainty, R.e., Schenfeld, E.M., Quevedo, M.A., Fernández, M.A., Longhi, M.R., Granero, G.E.: Characterization of the hydrochlorothiazide: β-cyclodextrin inclusion complex. Experimental and theoretical methods. J. Phys. Chem. B 117(1), 206–217 (2012)

    Article  CAS  Google Scholar 

  49. Oda, M., Kuroda, M.: Molecular dynamics simulations of inclusion complexation of glycyrrhizic acid and cyclodextrins (1: 1) in water. J. Incl. Phenom. Macrocycl. Chem. 85(3–4), 271–279 (2016)

    Article  CAS  Google Scholar 

  50. Nociari, M.M., Lehmann, G.L., Bay, A.E.P., Radu, R.A., Jiang, Z., Goicochea, S., Schreiner, R., Warren, J.D., Shan, J., de Beaumais, S.A.: Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 111(14), E1402–E1408 (2014)

    Article  CAS  Google Scholar 

  51. Kogawa, A.C., Zoppi, A., Quevedo, M.A., Raquel, M.: Complexation between darunavir ethanolate and β-cyclodextrin experimental and theoretical studies. World J. Pharm. Pharmaceut. Sci. 298–309 (2014)

  52. Al-Rawashdeh, N.A.F., Al-Sadeh, K.S., Al-Bitar, M.B.: Inclusion complexes of sunscreen agents with β-cyclodextrin: spectroscopic and molecular modeling studies. J. Spectrosc. 1(1), 1–11 (2013)

    Article  CAS  Google Scholar 

  53. Mobley, D.L., Gilson, M.K.: Predicting binding free energies: frontiers and benchmarks. Ann. Rev. Biophys. 46, 531–558 (2017)

    Article  CAS  Google Scholar 

  54. Abel, R., Wang, L., Mobley, D.L., Friesner, R.A.: A critical review of validation, blind testing, and real-world use of alchemical protein-ligand binding free energy calculations. Curr. Top. Med. Chem. 17(23), 2577–2585 (2017)

    Article  CAS  Google Scholar 

  55. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23(2), 187–199 (1977)

    Article  Google Scholar 

  56. Wickstrom, L., He, P., Gallicchio, E., Levy, R.M.: Large scale affinity calculations of cyclodextrin host–guest complexes: understanding the role of reorganization in the molecular recognition process. J. Chem. Theory Comput. 9(7), 3136–3150 (2013)

    Article  CAS  Google Scholar 

  57. Zhang, H., Yin, C., Yan, H., van der Spoel, D.: Evaluation of generalized born models for large scale affinity prediction of cyclodextrin host–guest complexes. J. Chem. Inform. Model. 56(10), 2080–2092 (2016)

    Article  CAS  Google Scholar 

  58. Veselinović, A.M., Veselinović, J.B., Toropov, A.A., Toropova, A.P., Nikolić, G.M.: In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Int. J. Pharmaceut. 495(1), 404–409 (2015)

    Article  CAS  Google Scholar 

  59. Tan, Z., Xia, J., Zhang, B.W., Levy, R.M.: Locally weighted histogram analysis and stochastic solution for large-scale multi-state free energy estimation. J. Chem. Phys. 144(3), 034107 (2016)

    Article  CAS  Google Scholar 

  60. Sugita, M., Hirata, F.: Predicting the binding free energy of the inclusion process of 2-hydroxypropyl-β-cyclodextrin and small molecules by means of the MM/3D-RISM method. J. Phys. Condens. Mater. 28(38), 384002 (2016)

    Article  CAS  Google Scholar 

  61. Sancho, M.I., Andujar, S., Porasso, R.D., Enriz, R.D.: Theoretical and experimental study of inclusion complexes of β-cyclodextrins with chalcone and 2′,4′-dihydroxychalcone. J. Phys. Chem. B 120(12), 3000–3011 (2016)

    Article  CAS  Google Scholar 

  62. Sahra, K., Dinar, K., Seridi, A., Kadri, M.: Investigation on the inclusion of diclofenac with β-cyclodextrin: a molecular modeling approach. Struct. Chem. 26(1), 61–69 (2015)

    Article  CAS  Google Scholar 

  63. Angelova, S., Nikolova, V., Molla, N., Dudev, T.: Factors Governing the host–guest interactions between IIA/IIB group metal cations and α-cyclodextrin: a DFT/CDM study. Inorg. Chem. 56(4), 1981–1987 (2017)

    Article  CAS  Google Scholar 

  64. Ateba, B.A., Lissouck, D., Azébazé, A., Ebelle, C.T., Nassi, A., Ngameni, E., Duportail, G., Mbazé, L., Kenfack, C.A.: Characterization of Mammea A/AA in solution and in interaction with β-cyclodextrin: UV–visible spectroscopy, cyclic voltammetry and DFT-TDDFT/MD study. J. Mol. Liq. 213, 294–303 (2016)

    Article  CAS  Google Scholar 

  65. Henriksen, N.M., Fenley, A.T., Gilson, M.K.: Computational calorimetry: high-precision calculation of host–guest binding thermodynamics. J. Chem. Theory Comput. 11(9), 4377–4394 (2015)

    Article  CAS  Google Scholar 

  66. Cao, R., Wu, S.: In silico properties characterization of water-soluble γ-cyclodextrin bi-capped C 60 complex: free energy and geometrical insights for stability and solubility. Carbohyd. Polym. 124, 188–195 (2015)

    Article  CAS  Google Scholar 

  67. Tóth, G., Mohácsi, R., Rácz, Á., Rusu, A., Horváth, P., Szente, L., Béni, S., Noszál, B.: Equilibrium and structural characterization of ofloxacin–cyclodextrin complexation. J. Incl. Phenom. Macrocycl. Chem. 77(1–4), 291–300 (2013)

    Article  CAS  Google Scholar 

  68. Shi, M., Zhang, C., Xie, Y., Xu, D.: Stereoselective inclusion mechanism of ketoprofen into β-cyclodextrin: insights from molecular dynamics simulations and free energy calculations. Theor. Chem. Acc. 133(10), 1556 (2014)

    Article  CAS  Google Scholar 

  69. Melani, F., Pasquini, B., Caprini, C., Gotti, R., Orlandini, S., Furlanetto, S.: Combination of capillary electrophoresis, molecular modeling and NMR to study the enantioselective complexation of sulpiride with double cyclodextrin systems. J. Pharmaceut. Biomed. 114, 265–271 (2015)

    Article  CAS  Google Scholar 

  70. Li, L., Li, X., Luo, Q., You, T.: A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches. Talanta 142, 28–34 (2015)

    Article  CAS  Google Scholar 

  71. Ghatee, M.H., Sedghamiz, T.: Chiral recognition of propranolol enantiomers by β-cyclodextrin: quantum chemical calculation and molecular dynamics simulation studies. Chem. Phys. 445, 5–13 (2014)

    Article  CAS  Google Scholar 

  72. Amharar, Y., Grandeury, A., Sanselme, M., Petit, S., Coquerel, G.r.: A hybrid mechanism in chiral discrimination induced by crystallization of supramolecular compounds. J. Phys. Chem. B 116(20), 6027–6040 (2012)

    Article  CAS  Google Scholar 

  73. Alvira, E.: Molecular dynamics study of the influence of solvents on the chiral discrimination of alanine enantiomers by β-cyclodextrin. Tetrahedron Asymmetr. 24(19), 1198–1206 (2013)

    Article  CAS  Google Scholar 

  74. Alvira, E.: Influence of molecular stereochemistry on the continuum model for van der waals interaction between β-cyclodextrin and linear molecules. Curr. Phys. Chem. 3(3), 357–365 (2013)

    Article  CAS  Google Scholar 

  75. Alvira, E.: Theoretical study of the separation of valine enantiomers by β-cyclodextrin with different solvents: a molecular mechanics and dynamics simulation. Tetrahedron Asymmetr. 26(15), 853–860 (2015)

    Article  CAS  Google Scholar 

  76. Abou-Zeid, L.A., Hefnawy, M.: Molecular modeling study of the chiral recognition of celiprolol enantiomers by a β-cyclodextrin. Pharmaceut. Chem. J. 2(3), 16–23 (2015)

    CAS  Google Scholar 

  77. Suliman, F.O., Elbashir, A.A.: Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: a molecular modeling approach. J. Mol. Struct. 1019, 43–49 (2012)

    Article  CAS  Google Scholar 

  78. Periasamy, R., Kothainayaki, S., Sivakumar, K.: Encapsulation of dicinnamalacetone in β-cyclodextrin: A physicochemical evaluation and molecular modeling approach on 1: 2 inclusion complex. J. Macromol. Sci. A 53(9), 546–556 (2016)

    Article  CAS  Google Scholar 

  79. Terekhova, I., Kumeev, R., Alper, G., Chakraborty, S., Pérez-Sánchez, H., Núñez-Delicado, E.: Molecular recognition of aromatic carboxylic acids by hydroxypropyl-γ-cyclodextrin: experimental and theoretical evidence. RSC Adv. 6(55), 49567–49577 (2016)

    Article  CAS  Google Scholar 

  80. Zhang, H., Ge, C., van der Spoel, D., Feng, W., Tan, T.: Insight into the structural deformations of beta-cyclodextrin caused by alcohol cosolvents and guest molecules. J. Phys. Chem. B 116(12), 3880–3889 (2012)

    Article  CAS  Google Scholar 

  81. Zhang, H., Feng, W., Li, C., Lv, Y., Tan, T.: A model for the shuttle motions of puerarin and daidzin inside the cavity of β-cyclodextrin in aqueous acetic acid: insights from molecular dynamics simulations. J. Mol. Model. 18(1), 221–227 (2012)

    Article  CAS  Google Scholar 

  82. Chandrasekaran, S., Sudha, N., Premnath, D., Enoch, I.V.: Binding of a chromen-4-one Schiff’s base with bovine serum albumin: capping with β-cyclodextrin influences the binding. J. Biomol. Struct. Dyn. 33(9), 1945–1956 (2015)

    Article  CAS  Google Scholar 

  83. Sameena, Y., Sudha, N., Chandrasekaran, S., Enoch, I.V.: The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling. J. Biol. Phys. 40(4), 347–367 (2014)

    Article  CAS  Google Scholar 

  84. Yan, J., Wu, D., Ma, X., Wang, L., Xu, K., Li, H.: Spectral and molecular modeling studies on the influence of β-cyclodextrin and its derivatives on aripiprazole-human serum albumin binding. Carbohyd. Polym. 131, 65–74 (2015)

    Article  CAS  Google Scholar 

  85. Tang, P., Tang, B., Wang, Q., Xu, K., Xiong, X., Li, H.: Effect of hydroxypropyl-β-cyclodextrin on the bounding of salazosulfapyridine to human serum albumin. Int. J. Biol. Macromol. 92, 105–115 (2016)

    Article  CAS  Google Scholar 

  86. Natesan, S., Sowrirajan, C., Dhanaraj, P., Enoch, I.V.: Capping of silybin with β-cyclodextrin influences its binding with bovine serum albumin: a study by fluorescence spectroscopy and molecular modeling. Bull. Korean Chem. Soc. 35(7), 2114–2122 (2014)

    Article  CAS  Google Scholar 

  87. Mansouri, M., Pirouzi, M., Saberi, M.R., Ghaderabad, M., Chamani, J.: Investigation on the interaction between cyclophosphamide and lysozyme in the presence of three different kind of cyclodextrins: determination of the binding mechanism by spectroscopic and molecular modeling techniques. Molecules 18(1), 789–813 (2013)

    Article  CAS  Google Scholar 

  88. Figueiras, A., Sarraguça, J.M., Pais, A.A., Carvalho, R.A., Veiga, J.F.: The role of l-arginine in inclusion complexes of omeprazole with cyclodextrins. AAPS PharmSci Tech. 11(1), 233–240 (2010)

    Article  CAS  Google Scholar 

  89. Sherje, A.P., Kulkarni, V., Murahari, M., Nayak, U.Y., Bhat, P., Suvarna, V., Dravyakar, B.: Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: Formulation characterization and molecular modeling studies. Mol. Pharmaceut. 14(4), 1231–1242 (2017)

    Article  CAS  Google Scholar 

  90. Sapte, S., Pore, Y.: Inclusion complexes of cefuroxime axetil with β-cyclodextrin: physicochemical characterization, molecular modeling and effect of l-arginine on complexation. J. Pharm. Anal. 6(5), 300–306 (2016)

    Article  Google Scholar 

  91. Suvarna, V., Kajwe, A., Murahari, M., Pujar, G.V., Inturi, B.K., Sherje, A.P.: Inclusion complexes of nateglinide with HP–β–CD and l-arginine for solubility and dissolution enhancement: preparation, characterization, and molecular docking study. J. Pharm. Innov. 12(2), 168–181 (2017)

    Article  Google Scholar 

  92. Méndez, S.G., Otero Espinar, F.J., Alvarez, A.L., Longhi, M.R., Quevedo, M.A., Zoppi, A.: Ternary complexation of benzoic acid with β-cyclodextrin and aminoacids. Experimental and theoretical studies. J. Incl. Phenom. Macrocycl. Chem. 85(1–2), 33–48 (2016). https://doi.org/10.1007/s10847-016-0603-6

    Article  CAS  Google Scholar 

  93. Jadhav, P., Petkar, B., Pore, Y., Kulkarni, A., Burade, K.: Physicochemical and molecular modeling studies of cefixime–l-arginine–cyclodextrin ternary inclusion compounds. Carbohyd. Polym. 98(2), 1317–1325 (2013)

    Article  CAS  Google Scholar 

  94. Barbosa, J.A.A., Zoppi, A., Quevedo, M.A., de Melo, P.N., de Medeiros, A.S.A., Streck, L., de Oliveira, A.R., Fernandes-Pedrosa, M.F., Longhi, M.R., da Silva-Júnior, A.A.: Triethanolamine stabilization of methotrexate-β-cyclodextrin interactions in ternary complexes. Int. J. Mol. Sci. 15(9), 17077–17099 (2014)

    Article  CAS  Google Scholar 

  95. Li, L., Zhao, M., Li, W., Wang, Y., Zhang, Z., An, R., Peng, S.: Self-complexation and complexation-controlled target cancer therapy. MedChemComm 3(9), 1059–1061 (2012)

    Article  CAS  Google Scholar 

  96. He, H., Chen, S., Zhou, J., Dou, Y., Song, L., Che, L., Zhou, X., Chen, X., Jia, Y., Zhang, J.: Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 34(21), 5344–5358 (2013)

    Article  CAS  Google Scholar 

  97. Shi, Q., Zhang, L., Liu, M., Zhang, X., Zhang, X., Xu, X., Chen, S., Li, X., Zhang, J.: Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials 67, 169–182 (2015)

    Article  CAS  Google Scholar 

  98. Xiong, Q., Zhang, M., Zhang, Z., Shen, W., Liu, L., Zhang, Q.: Anti-tumor drug delivery system based on cyclodextrin-containing pH-responsive star polymer: in vitro and in vivo evaluation. Int. J. Pharmaceut. 474(1), 232–240 (2014)

    Article  CAS  Google Scholar 

  99. Dan, Z., Cao, H., He, X., Zeng, L., Zou, L., Shen, Q., Zhang, Z.: Biological stimuli-responsive cyclodextrin-based host–guest nanosystems for cancer therapy. Int. J. Pharmaceut. 483(1), 63–68 (2015)

    Article  CAS  Google Scholar 

  100. Swiech, O., Mieczkowska, A., Chmurski, K., Bilewicz, R.: Intermolecular interactions between doxorubicin and β-cyclodextrin 4-methoxyphenol conjugates. J. Phys. Chem. B 116(6), 1765–1771 (2012)

    Article  CAS  Google Scholar 

  101. Hrubý, M., Koňák, Č., Ulbrich, K.: Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control Release 103(1), 137–148 (2005)

    Article  CAS  Google Scholar 

  102. Swiech, O., Majdecki, M., Debinski, A., Krzak, A., Stępkowski, T.M., Wójciuk, G., Kruszewski, M., Bilewicz, R.: Competition between self-inclusion and drug binding explains the pH dependence of the cyclodextrin drug carrier–molecular modelling and electrochemistry studies. Nanoscale 8(37), 16733–16742 (2016)

    Article  CAS  Google Scholar 

  103. Swiech, O., Dutkiewicz, P., Wójciuk, K., Chmurski, K., Kruszewski, M., Bilewicz, R.: Cyclodextrin derivatives conjugated with aromatic moieties as pH-responsive drug carriers for anthracycline. J. Phys. Chem. B 117(43), 13444–13450 (2013)

    Article  CAS  Google Scholar 

  104. De Sousa, F.B., Lima, A.C., Denadai, Â.M., Anconi, C.P., De Almeida, W.B., Novato, W.T., Dos Santos, H.F., Drum, C.L., Langer, R., Sinisterra, R.D.: Superstructure based on β-CD self-assembly induced by a small guest molecule. Phys. Chem. Chem. Phys. 14(6), 1934–1944 (2012)

    Article  CAS  Google Scholar 

  105. Goh, G.B., Hulbert, B.S., Zhou, H., Brooks, C.L.: Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism. Proteins: structure, function, and bioinformatics 82(7), 1319–1331 (2014)

    Article  CAS  Google Scholar 

  106. Swails, J.M., York, D.M., Roitberg, A.E.: Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation. J. Chem. Theory Comput. 10(3), 1341–1352 (2014)

    Article  CAS  Google Scholar 

  107. Arthur, E.J., Brooks, C.L.: Efficient implementation of constant pH molecular dynamics on modern graphics processors. J. Comput. Chem. 37(24), 2171–2180 (2016)

    Article  CAS  Google Scholar 

  108. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38(4), 875–882 (2009)

    Article  CAS  Google Scholar 

  109. Zhang, H., Tan, T., Feng, W., Van Der Spoel, D.: Molecular recognition in different environments: β-cyclodextrin dimer formation in organic solvents. J. Phys. Chem. B 116(42), 12684–12693 (2012)

    Article  CAS  Google Scholar 

  110. Zhang, H., Tan, T., Hetényi, C., Van Der Spoel, D.: Quantification of solvent contribution to the stability of noncovalent complexes. J. Chem. Theory Comput. 9(10), 4542–4551 (2013)

    Article  CAS  Google Scholar 

  111. Zhang, H., Tan, T., Hetényi, C., Lv, Y., Van Der Spoel, D.: Cooperative binding of cyclodextrin dimers to isoflavone analogues elucidated by free energy calculations. J. Phys. Chem. C 118(13), 7163–7173 (2014)

    Article  CAS  Google Scholar 

  112. Staelens, N., Leherte, L., Vercauteren, D.P.: Formation and structural, energetic and dynamic properties of cyclodextrin host tubes and included guest molecules. Supramol. Chem. 27(1–2), 90–109 (2015)

    Article  CAS  Google Scholar 

  113. Raffaini, G., Ganazzoli, F.: A molecular modeling study of complex formation and self-aggregation behavior of a porphyrin-β-cyclodextrin conjugate. J. Incl. Phenom. Macrocycl Chem. 76(1–2), 213–221 (2013). https://doi.org/10.1007/s10847-012-0193-x

    Article  CAS  Google Scholar 

  114. Liu, Y., Chipot, C., Shao, X., Cai, W.: Threading or tumbling? Insight into the self-inclusion mechanism of an altro-α-cyclodextrin derivative. J. Phys. Chem. C 118(33), 19380–19386 (2014)

    Article  CAS  Google Scholar 

  115. Wallace, S.J., Kee, T.W., Huang, D.M.: Molecular basis of binding and stability of curcumin in diamide-linked γ-cyclodextrin dimers. J. Phys. Chem. B 117(41), 12375–12382 (2013)

    Article  CAS  Google Scholar 

  116. Trotta, F., Zanetti, M., Cavalli, R.: Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 8(1), 2091–2099 (2012)

    Article  CAS  Google Scholar 

  117. Raffaini, G., Ganazzoli, F., Mele, A., Castiglione, F.: A molecular dynamics study of cyclodextrin nanosponge models. J. Incl. Phenom. Macrocycl. Chem. 75(3–4), 263–268 (2013)

    Article  CAS  Google Scholar 

  118. Mixcoha, E., Campos-Terán, J., Piñeiro, A.n.: Surface adsorption and bulk aggregation of cyclodextrins by computational molecular dynamics simulations as a function of temperature: α-CD vs β-CD. J. Phys. Chem. B 118(25), 6999–7011 (2014)

    Article  CAS  Google Scholar 

  119. Takayanagi, M., Ito, S., Matsumoto, K., Nagaoka, M.: Formation of reactant complex structure for initiation reaction of lactone ring-opening polymerization by cooperation of multiple cyclodextrin. J. Phys. Chem. B 120(29), 7174–7181 (2016)

    Article  CAS  Google Scholar 

  120. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J. Pharm. Pharmacol 63(9), 1119–1135 (2011)

    Article  CAS  Google Scholar 

  121. Loftsson, T.: Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Int. J. Pharmaceut. Sci. 67(5), 363–370 (2012)

    CAS  Google Scholar 

  122. Khuntawee, W., Wolschann, P., Rungrotmongkol, T., Wong-Ekkabut, J., Hannongbua, S.: Molecular dynamics simulations of the interaction of beta cyclodextrin with a lipid bilayer. J. Chem. Inf. Model. 55(9), 1894–1902 (2015)

    Article  CAS  Google Scholar 

  123. Hashidzume, A., Yamaguchi, H., Harada, A.: Cyclodextrin-based molecular machines. In: Credi, A., Silvi, S., Venturi, M. (eds.) Molecular Machines and Motors, pp. 71–110. Springer, Dordrecht (2014)

    Google Scholar 

  124. Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106(3), 782–817 (2006)

    Article  CAS  Google Scholar 

  125. Singharoy, A., Chipot, C.: Methodology for the simulation of molecular motors at different scales. J. Phys. Chem. B 121(15), 3502–3514 (2016)

    Article  CAS  Google Scholar 

  126. Liu, P., Chipot, C., Cai, W., Shao, X.: Unveiling the underlying mechanism for compression and decompression strokes of a molecular engine. J. Phys. Chem. C 118(23), 12562–12567 (2014)

    Article  CAS  Google Scholar 

  127. Bruns, C.J., Stoddart, J.F.: The Nature of the Mechanical Bond: From Molecules to Machines. Wiley, Hoboken (2016)

    Book  Google Scholar 

  128. Liu, P., Chipot, C., Shao, X., Cai, W.: Solvent-controlled shuttling in a molecular switch. J. Phys. Chem. C 116(7), 4471–4476 (2012)

    Article  CAS  Google Scholar 

  129. Low, P.J., Marqués-González, S.: Molecular wires: an overview of the building blocks of molecular electronics. In: Kiguchi, M. (ed.) Single-Molecule Electronics, pp. 87–116. Springer, Dordrecht (2016)

    Google Scholar 

  130. Tallury, S.S., Smyth, M.B., Cakmak, E., Pasquinelli, M.A.: Molecular dynamics simulations of interactions between polyanilines in their inclusion complexes with β-cyclodextrins. J. Phys. Chem. B 116(7), 2023–2030 (2012)

    Article  CAS  Google Scholar 

  131. Muhammad, E.F., Adnan, R., Latif, M.A.M., Rahman, M.B.A.: Theoretical investigation on insulin dimer-β-cyclodextrin interactions using docking and molecular dynamics simulation. J. Incl. Phenom. Macrocycl. Chem. 84(1–2), 1–10 (2016)

    Article  CAS  Google Scholar 

  132. Krauland, A.H., Alonso, M.J.: Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharmaceut. 340(1–2), 134–142 (2007)

    Article  CAS  Google Scholar 

  133. Berhanu, W.M., Masunov, A.E.: Controlling the aggregation and rate of release in order to improve insulin formulation: Molecular dynamics study of full-length insulin amyloid oligomer models. J. Mol. Model. 18(3), 1129–1142 (2012)

    Article  CAS  Google Scholar 

  134. Muhammad, E.F.: Docking And Molecular Dynamics Simulation Studies Of Insulin-Β-Cyclodextrin Interactions. Universiti Sains Malaysia, Gelugor (2016)

    Google Scholar 

  135. Panchal, A.: Insulin drug delivery systems: a review. Int. J. Res. Pharmaceut. Sci. 2(4), 484–492 (2016)

    Google Scholar 

  136. Gonzalez-Gaitano, G., Ramon Isasi, J., Velaz, I., Zornoza, A.: Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: present and perspectives. Curr. Pharm. Design 23(3), 411–432 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Secretaria de Ciencia y Técnica of the Universidad Nacional de Córdoba (SECYT-UNC), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Agencia Nacional de Promoción Científica y Técnica (ANPCyT), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana Zoppi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quevedo, M.A., Zoppi, A. Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J Incl Phenom Macrocycl Chem 90, 1–14 (2018). https://doi.org/10.1007/s10847-017-0763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0763-z

Keywords

Navigation