Cisplatin cyclodextrin complexes as potential free radical chemoradiosensitizers for enhanced cisplatin treatment of cancers: a quantum mechanical study

  • Clifford W. Fong
Original Article


It has been shown in this study that {CisPt@[n]CD} complexes formed from the anti-cancer drug cisplatin (CisPt) and cyclodextrins ([n]CD) can be a source of Pt based free radicals such as (H3N)2PtCl· and (H3N)2Pt·· species in water within a radiation environment which can produce hydrated electrons. Encapsulating CisPt within the [n]CD host takes advantage of the previously described drug delivery and reduced side effect advantages of CDs. Based on quantum mechanical modelling and literature results from other studies, it is predicted that {CisPt@[γ]CD} and the analogous 2-hydroxypropyl[β]cyclodextrin (HPBCD) complex {CisPt@HPBCD} may interact with serum albumin and engage in an enhanced permeation and retention mechanism in solid tumours, offering further synergistic advantages for radiation-{CisPt@[γ]CD} or -{CisPt@HPBCD} regimens over that of the conventional radiation-CisPt regimens in current use in anti-cancer chemoradiotherapies. Comparisons and possible advantages are made with the previously documented chemoradiosensitizing properties of the analogous cucurbit[7]uril based{CisPt@[7]CB} complex with the {CisPt@[γ]CD} and {CisPt@HPBCD} complexes suggest that all three complexes may have different and tailorable anti-tumour uses for a range of different chemotherapeutic environments or protocols.


Cyclodextrins Cisplatin Free radicals Chemoradiotherapy Anti-cancer 









Cisplatin-[n]cyclodextrin complex






Free radical species


Free energy change


Highest occupied molecular orbital


Lowest unoccupied molecular orbital


Natural bonding molecular orbital


  1. 1.
    Koivusalo, R., Krausz, E., Ruotsalainen, P., Helenius, H., Hietanen, S.: Chemoradiation of cervical cancer cells: targeting human papillomavirus E6 and p53 leads to either augmented or attenuated apoptosis depending on the platinum carrier ligand. Cancer Res. 62, 7364–7371 (2002)Google Scholar
  2. 2.
    Berclaz, G., Gerber, E., Beer, K., Aebi, S., Greiner, R., Dreher, E., Buser, K.: Long-term follow-up of concurrent radiotherapy and chemotherapy for locally advanced cervical cancer: 12-Year survival after radiochemotherapy. Int. J. Oncol. 20, 1313–1318 (2002)Google Scholar
  3. 3.
    Boeckman, H.J., Trego, K.S., Turchi, J.J.: Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Mol. Cancer Res. 3, 277–285, (2005)CrossRefGoogle Scholar
  4. 4.
    Candelaria, M., Garcia-Arias, A., Cetina, L., Duenas-Gonzalez, A.: Radiosensitizers in cervical cancer. Cisplatin and beyond. Radiat. Oncol. 1, 1–17 (2006)CrossRefGoogle Scholar
  5. 5.
    Tippayamontri, T., Kotb, R., Paquette, B., Sanche, L.: Synergism in concomitant chemoradiotherapy of cisplatin and oxaliplatin and their liposomal formulation in the human colorectal cancer HCT116 model. Anticancer Res. 32, 4395–4404 (2012)Google Scholar
  6. 6.
    Boulikas, T., Pantos, A., Bellis, E., Christofis, P.: Designing platinum compounds in cancer: structures and mechanisms. Cancer Ther. 5, 537–583 (2007)Google Scholar
  7. 7.
    Apps, M.G., Choi, E.H.Y., Wheate, N.J.: The state-of-play and future of platinum drugs. Endocr. Relat. Cancer 22, R219–R233 (2015)Google Scholar
  8. 8.
    Dasari, S., Tchounwou, P.B.: Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014)CrossRefGoogle Scholar
  9. 9.
    di Cagno, M.P.: The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules 22, 1–14 (2017)CrossRefGoogle Scholar
  10. 10.
    Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 198268, (2015) doi: 10.1155/2015/198268
  11. 11.
    Malanga, M., Szeman, J., Fenyvesi, E., Puskas, I., Csabai, K., Gyemant, G., Fenyvesi, F., Szente, L.: “Back to the future”: a new look at hydroxypropyl beta-cyclodextrins. J. Pharm. Sci. 105, 2921–2931 (2016)CrossRefGoogle Scholar
  12. 12.
    Balaji, A., Pandey, V.P., Srinath, M.S., Manavalan, M.: Synthesis and characterization studies of cisplatin/hydroxypropyl-β-cyclodextrin complex. Pharmacologyonline 1, 1135–1143 (2009)Google Scholar
  13. 13.
    Fong, C.W.: Cucurbiturils as potential free radical chemoradiosensitizers for enhanced cisplatin treatment of cancers: a quantum mechanical study. J. Incl. Phenom. Macrocycl. Chem. 87, 283–294 (2017). doi: 10.1007/s10847-017-0689-4 CrossRefGoogle Scholar
  14. 14.
    Fong, C.W.: Platinum anti-cancer drugs: free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic. Biol. Med. 95, 216–229 (2016)CrossRefGoogle Scholar
  15. 15.
    Fong, C.W.: Platinum based radiochemotherapies: free radical mechanisms and radiotherapy sensitizers. Free Radic. Biol. Med. 99, 99–109 (2016)CrossRefGoogle Scholar
  16. 16.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–419 (2015)CrossRefGoogle Scholar
  17. 17.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S. M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues—beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)CrossRefGoogle Scholar
  18. 18.
    Jeon, W.S., Moon, K., Park, S.H., et al.: Complexation of ferrocene derivatives by the Cucurbit[7]uril Host: a comparative study of the Cucurbituril and cyclodextrin host families. J. Am. Chem. Soc. 127, 12984–12989 (2005)CrossRefGoogle Scholar
  19. 19.
    Oun, R., Floriano, R.S., Isaacs, L., Rowan, E.G., Wheate, N.J.: The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles. Toxicol. Res. 3, 447–455 (2014)CrossRefGoogle Scholar
  20. 20.
    Oftadeh, M., Behbahani, G.R., Saboury, A.A., Rafie, S.: Investigation of the effects of various cyclodextrins on the stabilisation of human serum albumin by a spectroscopic method. Aust. J. Chem. 68, 1894–1899 (2015)CrossRefGoogle Scholar
  21. 21.
    Ghosh, S., Paul, B.K., Chattopadhyay, N.: J. Chem. Sci. 126, 931 (2014). doi: 10.1007/s12039-014-0652-6 CrossRefGoogle Scholar
  22. 22.
    Roy, D., Marianski, M.M., Maitra, N.T., Dannenberg, J.J.: Comparison of some dispersion-corrected and traditional functional with CCSD(T) and MP2 ab initio methods: dispersion, induction, and basis set superposition error. J. Chem. Phys. 137, 134109 (2012)CrossRefGoogle Scholar
  23. 23.
    Bhasikuttan, A.C., Mohanty, J., Nau, W.M., Pal, H.: Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. Angew. Chem. Int. Ed. 46, 4120–4122 (2007)CrossRefGoogle Scholar
  24. 24.
    Lim, Y., Kim, T., Lee, J.W., et al.: Self-assembled ternary complex of cationic dendrimer, cucurbituril, and dna: noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem. 13, 1181–1185 (2002)CrossRefGoogle Scholar
  25. 25.
    Saleh, N., Ghosh, I., Nau, W.M.: Cucurbiturils in drug delivery and for biomedical applications, Chap. 7: Cucurbiturils in Drug Delivery And For Biomedical Applications. In: Schneider, H.-J. (eds.) Supramolecular Systems in Biomedical Fields, pp. 164–212. Royal Society of Chemistry, Cambridge (2013)CrossRefGoogle Scholar
  26. 26.
    Peverati, R., Truhlar, D.G,: The quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil. Trans. Soc. A 372, (2014). doi: 10.1098/rsta.2012.0476
  27. 27.
    Waller, M.P., Kruse, H., Mück-Lichtenfeld, C., Grimme, S.: Investigating inclusion complexes using quantum chemical methods. Chem. Soc. Rev. 41, 3119–3128 (2012)CrossRefGoogle Scholar
  28. 28.
    Roy, D., Marianski, M., Neepa, I., Maitra, M.T., Dannenberg, J.J.: Comparison of some dispersion-corrected and traditional functional with CCSD(T) and MP2 ab initio methods: dispersion, induction, and basis set superposition error. J. Chem. Phys. 137, 134109–134112 (2012)CrossRefGoogle Scholar
  29. 29.
    Xing, S., Zhang, Q., Zhang, C., Zhao, Q., Ai, H., Sun, D.: Isothermal titration calorimetry and theoretical studies on host-guest interaction of ibuprofen with α-, β- and γ-cyclodextrin. J Sol. Chem. 38, 531–143 (2009)CrossRefGoogle Scholar
  30. 30.
    Manzoori, J., Amjadi, M.: Spectrofluorimetric study of host-guest complexation of ibuprofen with beta-cyclodextrin and its analytical application. Spectrochim. Acta 59, 909–916 (2003)CrossRefGoogle Scholar
  31. 31.
    Wang, R., Zhou, H., Siu, S.W.I., Gan, Y., Wang, Y., Ouyang, D.: Comparison of three molecular simulation approaches for cyclodextrin-ibuprofen complexation. J. Nanomater. 193049, 8 (2015) doi: 10.1155/2015/193049 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.EigenenergyAdelaideAustralia

Personalised recommendations