Solvent effect on complexation reactions

  • Mahmood Payehghadr
  • Seyed Ebrahim Hashemi
Review Article


The solvent nature plays a critical role in stabilizing the complexation process. Several models were used for describing the solvent–solute interactions in complex reactions. One form of such interactions is classical Lewis type donor–acceptor interactions. Another type of interactions is the so-called “soft–soft” interactions, where both partners can donate and accept electron pairs. This concept states that “hard’ acids prefer to associate with “hard” bases and “soft” acids with “soft” bases. In addition, the solvating ability of the solvent, as expressed by the Guttmann donocity scale (DN: donor number), plays a fundamental role in the complexation reaction. This scale is based on the enthalpy of the reaction between solvent and SbC15 in dilute 1,2-dichloroethane solution. Furthermore, the coordination power (CP), a measure of a solvent’s donor ability, is related to the Gibbs free energy change on the solvation of nickel (II) ion. Coordination power for a solvent is the difference in the stability constant between hexa (solvento)-nickel (II) ion and hexa (acetonitrile) nickel (II) ion and is subsequently related to the relative Gibbs free energy change for solvation of the nickel (II) ion. This Review is focused on the effect of solvent on the complex reactions and how these models can explain this behavior.


Complexation Solvent Metallic ions Formation constant Thermodynamics 


  1. 1.
    Gritner, G.:A critical view on the Lewis-donor (nucleophilic) properties of solvents.J. Mol. Liq. 73, 487–500 (1997)CrossRefGoogle Scholar
  2. 2.
    Smithrud, D.B., Diederic, F.: Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding. J. Am. Chem. Soc. 112, 339–343 (1990)CrossRefGoogle Scholar
  3. 3.
    Rounaghi, G., Eshaghi, Z., Ghiamati, E.: Thermodynamic study of complex formation between 18-crown-6 and potassium ion in some binary non-aqueous solvents using a conductometric method. Talanta. 44, 275–282 (1997)CrossRefGoogle Scholar
  4. 4.
    Pearson, R.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)CrossRefGoogle Scholar
  5. 5.
    Munakata, M., Kitagawa, S.: Coordination power series of solvents 2. The solvent effects on complex formations, half-wave potentials, 113cd nmr resonances and gibbs free energy changes of transfer. Inorg. Chim. Acta. 169, 225–234 (1990)CrossRefGoogle Scholar
  6. 6.
    Rounaghi, G. H., Deiminiat, B.: Study of complexation process between N-phenylaza-15-crown-5 with yttrium cation in binary mixed solvents. J. Incl. Phenom. Macrocycl. Chem. 72, 113–119 (2012)CrossRefGoogle Scholar
  7. 7.
    Huheey, J. E.: Inorganic Chemistry, p. 280, Harper, New York (1978)Google Scholar
  8. 8.
    Mayer, U., Gutmann, V., Gerger, M.: The acceptor number—a quantitative empirical parameter for the electrophilic properties of solvents. Monatsh. Chem. 106, 1235–1257 (1975)CrossRefGoogle Scholar
  9. 9.
    Gutmann, V., Wyehera, D.: Coordination reactions in non-aqueous solutions—the role of the donor. Inorg. Nucl. Chem. Lett. 2, 257–260 (1966)CrossRefGoogle Scholar
  10. 10.
    Greenberg, M. S., Popov, A. I.: Spectroscopic studies of ionic salvation-XVII. Studies of preferential solvation of the sodium ion in nonaqueous mixed solvents by sodium-23 nuclear magnetic resonance. Spectrochim. Acta, Part A. 31, 697–705 (1975)CrossRefGoogle Scholar
  11. 11.
    Montalti, M., Credi, A., Prodi, L., Tresa Gandolfi, M.: Handbook of Photochemistry, 3rd edn, CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  12. 12.
    Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)CrossRefGoogle Scholar
  13. 13.
    Marcus, Y.: The effectivity of solvents as electron pair donors. J. Solut. Chem. 13, 599–624 (1984)CrossRefGoogle Scholar
  14. 14.
    Cataldo, F.: A revision of the Gutmann donor numbers of a series of phosphoramides including tepa. Eur. Chem. Bull. 4, 92–97 (2015)Google Scholar
  15. 15.
    Taghdiri, M., Payehghadr, M., Behjatmanesh-Ardakani, R., Gha’ari, H.: Conductometric studies of thermodynamics of complexation of Co2+, Ni2+, Cu2+, and Zn2+ cations with Aza-18-crown-6 in binary acetonitrile-methanol mixtures. J. Thermodyn. 2012, 1–10 (2012)CrossRefGoogle Scholar
  16. 16.
    Laurence, C., Queignec-Cabanetos, M., Dziembowska, T., Queignec, R., Wojtkowiak, B.: 1-Iodoacetylenes. 1. Spectroscopic evidence of their complexes with Lewis bases. A spectroscopic scale of soft basicity. J. Am. Chem. Soc. 103, 2567–2573 (1981)CrossRefGoogle Scholar
  17. 17.
    Bevilaqua, T., Goncalves, T. F., Venturini, C. G., Machadob, V. G.: Solute–solvent and solvent–solvent interactions in the preferential solvation of 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide in 24 binary solvent mixtures. Spectrochim. Acta Part A. 65, 535–542 (2006)CrossRefGoogle Scholar
  18. 18.
    Munakata, M., Kitagawa, S., Miyazima, M.: Classification of solvents based on their coordination power to nickel(II) ion. A new measure for solvent donor ability. Inorg. Chem. 24, 1638–1643 (1985)CrossRefGoogle Scholar
  19. 19.
    Amuli, C., Eileb, M., Meullemeestre, J., Schwing, M. J., Vierling, F.: Spectrophotometric study of copper(II) chloride-trimethyl phosphate solutions. Thermodynamic and spectroscopic properties of copper(II) chloro complexes in nonaqueous solutions. Inorg. Chem. 25, 856–861 (1986)CrossRefGoogle Scholar
  20. 20.
    Rounaghi, G. H., Mohajeri, M., Tarahomi, S.: Complexation ability of dibenzo-24-crown-8 with Cs+ cation in binary mixed non-aqueous solvents. Asian J. Chem. 21, 4861–4867 (2009)Google Scholar
  21. 21.
    Yamada, S., Tanaka, M. J.: Softness of some metal ions. Inorg. Nucl. Chem. 37, 587–589 (1975)CrossRefGoogle Scholar
  22. 22.
    Izutsu, K., Nakamura, T., Iwata, K.: Complex formation of univalent cations in acetonitrile with other solvents. Study of potassium ion complex formation with a cation-sensitive glass electrode. Anal. Chim. Acta. 117, 329–335 (1980)CrossRefGoogle Scholar
  23. 23.
    Gokel, G.W., Echegoyen, L., Kim, M. S., Eyring, E. M., Petrucci, S.: Influence of solvent, anion and presence of nitrogen in the ring structure on the mechanism of complexation of alkali metal cations with crown ethers. Biophys. Chem. 26, 225–233 (1987)CrossRefGoogle Scholar
  24. 24.
    Schmidt, E., Hourdakis, A., Popov, A. I.: Multinuclear NMR study of 2,2′-bipyridine complexes with alkali cations in nonaqueous solvents. Inorg. Chim. Acta. 52, 91–95 (1981)CrossRefGoogle Scholar
  25. 25.
    Payehghadr, M., Taghdiri, M., Zamani, A., Hesaraki, N.: Conductometric studies of the thermodynamics of complexation of Zn2+, Ni2+, Co2+, Pb2+, Mn2+, Cu2+ ions with 1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane in binary solvent mixtures. Iran. J. Chem. Chem. Eng. 31, 1–7 (2012)Google Scholar
  26. 26.
    Rounaghi, G., Popov, A. I.: Thermodynamic studies of the complexation of dibenzo-27-crown-9 and dibenzo-24-crown-8 with cesium ion in mixed nonaqueous solvents. Inorg. Chim. Acta. 114, 145–149 (1986)CrossRefGoogle Scholar
  27. 27.
    Payehghadr, M., Heidari, R.: Conductometric studies of the thermodynamics complexation of Li+, Na+, K+, Mg2+, and Ba2+ ions with 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 ligand in acetonitrile, ethanol and methanol solutions. J. Incl. Phenom. Macrocycl. Chem. 75, 205–210 (2012)CrossRefGoogle Scholar
  28. 28.
    Payehghadr, M., Taghdiri, M., Behjatmanesh-Ardakani, R., Movahhedi, R., Nourifard, F.: Conductometric studies of thermodynamics of 1,10-didecyl-1,10-diaza-18-crown-6 complexes with Li+, Na+, K+, Cs+, NH4 +, Mg2+, and Ca2+ ions in acetonitrile, methanol, and ethanol solutions. J. Chem. 2013, 1–9 (2012)CrossRefGoogle Scholar
  29. 29.
    Taghdiri, M., Payehghadr, M., Behjatmanesh-Ardakani, R., Eslami, N.: Conductometric studies of thermodynamics of complexation of Li+, Na+ and K+ ions with 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 in binary acetonitrile–nitromethane mixtures. J. Incl. Phenom. Macrocycl. Chem. 77, 375–383 (2013)CrossRefGoogle Scholar
  30. 30.
    Castini, A., Sansone, F., Dozol, j. F., Rouquette, H., Arnaud-Neu, F., Byrene, D., Fuangsvasdi, S., Schwing- Weill, M. J., Ungaro, R.: New calix[4]arene-monobenzo- and -dibenzo-crown-6 as cesium selective ionophores in the radioactive waste treatment: synthesis, complexation and extraction properties. J. Incl. Phenom. Macrocycl. Chem. 41, 193–200 (2001)CrossRefGoogle Scholar
  31. 31.
    Arnaud-Neu, F., Cremin, S., Cunningham, D., Harris, S. J., Mcardle, P., Mckervey, M. A., Mcmanus, M., Schwing-Weill, M. J., Ziat, K.: Synthesis, x-ray crystal structure and cation binding properties of a tetrahomodioxacalix[4]arene tetraester. J. Incl. Phenom. Macrocycl. Chem. 10, 329–339 (1991)CrossRefGoogle Scholar
  32. 32.
    Payehghadr, M., Zamani, A., Salehi Sadaghiani, A. R., Taghdiri, M.: Spectrophotometric and conductometric studies of the thermodynamics complexation of Zn2+, Ni2+, Co2+, Pb2+ and Cu2+ ions with 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane ligand in acetonitrile solution. J. Incl. Phenom. Macrocycl. Chem. 62, 255–261 (2008)CrossRefGoogle Scholar
  33. 33.
    Spiess, B., Arnaud-Neu, F., Schwing-Weill, M. J.: Complexation dans le mCthanol anhydre de Cu (II) et Zn (II) par des ligands diaza-polyoxamacrocycliques. Helv. Chim. Acta. 62, 1531–1542 (1979)CrossRefGoogle Scholar
  34. 34.
    Bernardo, P. D., Melchior, A., Tolazzi, M., Zanonato, P. L.: Coordination chemistry reviews. Coord. Chem. Rev. 256, 328–351 (2012)CrossRefGoogle Scholar
  35. 35.
    Hamzi, I., Essalah, K., Arnaud-Neu, F., Abidi, R.: Lanthanide ion complexes of deprotonated p-isopropylcalix[n]arenes in dipolar aprotic solvents. J. Incl. Phenom. Macrocycl. Chem. 85, 69–82 (2016)CrossRefGoogle Scholar
  36. 36.
    Ahmadzadeh, S., Kassim, M.Rezayi, A., Abdollahi, Y., Rounaghi, G. H.: A conductometric study of complexation reaction between meso-ctamethylcalix[4]pyrrole with titanium cation in acetonitrile–ethanol binary mixtures. Int. J. Electrochem. Sci. 6, 4749–4759 (2011)Google Scholar
  37. 37.
    Shah, B. A., Christy, F. A., Shrivastav, P.S., Sanyal, M.: Study on complex formation of dicyclohexyl-18-crown-6 with Mg2+, Ca2+ and Sr2+ in acetonitrile-water binary mixtures by conductometry. J. Phys. Chem. Sci. 1, 1–5 (2014)Google Scholar
  38. 38.
    Bajaj, A. V., Poonia, N. S.: Comprehensive coordination chemistry of alkali and alkaline earth cations with macrocyclic multidentates: latest position. Coord. Chem. Rev. 87, 55–213 (1988)CrossRefGoogle Scholar
  39. 39.
    Razghandi, F., Rounaghi, G. H., Eshaghi, Z.: Study of complex formation between dicyclohexyl-18-crown-6 and UO2 2+ cation in some binary mixed non-aqueous solvents using conductometric method. J. Incl. Phenom. Macrocycl. Chem. 73, 87–92 (2012)CrossRefGoogle Scholar
  40. 40.
    Ahrland, S., Ishiguro, S. I.: Heats of solvation of the mercury(II), silver(I) and copper(I) ions, and of some of their halogeno complexes, in solvents of different coordinating properties. Inorg. Chim. Acta. 142, 277–284 (1988)CrossRefGoogle Scholar
  41. 41.
    Rezayi, M., Ahmadzadeh, S., Kassim, A., Heng, L. Y.: Thermodynamic studies of complex formation between Co(SALEN) Ionophore with chromate (II) Ions in AN-H2O binary solutions by the conductometric method. Int. J. Electrochem. Sci. 6, 6350–6359 (2011)Google Scholar
  42. 42.
    Ahmadzadeh, S., Kassim, A., Rezayi, M.: Thermodynamic study of the complexation of p-Isopropylcalix[6]arene with Cs+ cation in dimethylsulfoxide-acetonitrile. Binary Media Mol. 16, 8130–8142 (2011)Google Scholar
  43. 43.
    Karavan, M., Arnaud-Neu, F., Hubscher-Bruder, V., Smirnov, I., Kalchenko, V.: Novel phosphorylated calixarenes for the recognition of f-elements. J. Incl. Phenom. Macrocycl. Chem. 66, 113–123 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations