Porphyrin acidity and metal ion coordination revisited: electronic substitution effects

  • Svetlana G. Pukhovskaya
  • Dao Tkhe Nam
  • Yulia B. Ivanova
  • Lizaveta S. Liulkovich
  • Alexander S. Semeikin
  • Sergei A. Syrbu
  • Mikalai M. Kruk
Original Article


Macrocycle acidity and Zn2+ ion coordination are reported for three porphyrin derivatives which differ in both steric and electronic substitution effects on the macrocycle π-conjugated system. The role of the electronic substitution effects in the macrocycle deprotonation and metal ion chelating was found to be dominating whereas the macrocycle nonplanar distortions contribute to the acidity and metal chelation rate of the studied porphyrins in less extent. The contributions of both resonance and inductive electronic substitution effects have been distinguished based on the relationship between the weighted sum of resonance and inductive Hammett constants and the acidity and metal ion chelation rate.


Porphyrins Acid-base equilibria Substitution effect Molecular orbitals Conformation Metal complexation 



The reported study was supported by the grant of the Russian Science Foundation (Project No. 16-53-00100 Bel_а) and the grant of The Foundation of Fundamental Research of the Republic of Belarus (Project No. X16P-097). Prof. Mikalai M. Kruk also acknowledges the Ministry of Higher Education of the Republic of Belarus for continuous support.


  1. 1.
    Senge, M.O.: Excercises in molecular gymnastics - bending, stretching and twisting porphyrins. Chem. Commun. 3, 243–256 (2000)Google Scholar
  2. 2.
    Berezin, B.D.: Coordination Compounds of Porphyrins and Phthalocyanines. Wiley, New York (1981)Google Scholar
  3. 3.
    Davis, D.J., Electrochemistry of porphyrins. In: Dolphin, D. (ed.) The Porphyrins, vol. 5, p. 127. Academic Press, New York (1978)CrossRefGoogle Scholar
  4. 4.
    Phillips, J.N.: Physico-Chemical Properties of Porphyrins. In: Florkin, M., Stotz, E. (eds.) Comprehensive Biochemistry, pp. 34–73. Elsevier, Amsterdam (1963)Google Scholar
  5. 5.
    Andrianov, V.G., Malkova, O.V.: Acid-base properties of porphyrins in non-aqueous solution. Macroheterocycles. 2, 130–138 (2009)CrossRefGoogle Scholar
  6. 6.
    Kruk, M.M., Starukhin, A.S., Maes, W.: Influence of macrocycle protonation on the photophysical properties of porphyrins. Macroheterocycles. 4, 69–79 (2011)CrossRefGoogle Scholar
  7. 7.
    Ivanova, Y.B., Chizhova, N.V., Kruk, M.M.: Spectrophotometric study of 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyrin in the system 1,8-diazabicyclo[5.4.0]undec-7-ene- acetonitrile at 298 K. Deprotonation of the pyrrole rings and complex formation with Zn(OAc)2. Russ. J. Gen. Chem. 83, 558–563 (2013)CrossRefGoogle Scholar
  8. 8.
    Ivanova, Y.B., Nam, D.T., Syrbu, A.S., Kruk, M.M.: Formation of phthalocyanines deprotonated forms and their interaction with Zn Ions in the system 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile at 298 K. Russ. J. Gen. Chem. 83, 1155–1159 (2013)CrossRefGoogle Scholar
  9. 9.
    Nam, D.T., Ivanova, Y.B., Pukhovskaya, S.G., Syrbu, A.S., Kruk, M.M.: Acid-base equilibria and coordination chemistry of the 5,10,15,20-tetraalkyl-porphyrins: implications for metalloporphyrin synthesis. RSC Adv. 5, 26125–26131 (2015)CrossRefGoogle Scholar
  10. 10.
    Ivanova, Y.B., Chourakhina, Y.I., Kumeev, R.S., Mamardashvili, M.Z., Semeikin, A.S.: Synthesis and basic properties of 5-aza-2,3,7,8,12,13,17,18-octamethylporphyrin. Russ. J. Gen. Chem. 78, 1972–1976 (2008)CrossRefGoogle Scholar
  11. 11.
    He, C.L., Ren, F.L., Zhang, X.B., Han, Z.X.: A fluorescent chemical sensor for Hg(II) based on a corrole derivative in a PVC matrix. Talanta. 70, 364–370 (2006)CrossRefGoogle Scholar
  12. 12.
    Pukhovskaya, S.G., Efimovich, V.A., Semeikin, A.S., Kolodina, E.A., Golubchikov, O.A.: Electronic and steric effects of substituents on the coordinating properties of porphyrins. Russ. J. Gen. Chem. 82, 476–484 (2012)CrossRefGoogle Scholar
  13. 13.
    Senge, M.O., Kalish, W.W.: Synthesis and structural characterization of nonplanar tetraphenylporphyrins and their metal complexes with graded degrees of β-ethyl substitution. Inorg. Chem. 36, 6103–6116 (1997)CrossRefGoogle Scholar
  14. 14.
    Shelnutt, J.A., Song, X.-Z., Ma, J.-G., Jia, S.-L., Jentzen, W., Medforth, C.J.: Nonplanar porphyrins and their significance in proteins. Chem. Soc. Rev. 27, 31–41 (1998)CrossRefGoogle Scholar
  15. 15.
    Parusel, A.B.J., Wondimagegn, T., Ghosh, A.: Do nonplanar porphyrins have red-shifted electronic spectra? A DFT/SCI study and reinvestigation of a recent proposal. J. Am. Chem. Soc. 122, 6371–6374 (2000)CrossRefGoogle Scholar
  16. 16.
    Haddard, R.E., Gazeau, S., Pecaut, J., Marchon, J.-C., Medforth, C.J., Shelnutt, J.A.: Origin of the red shifts in the optical absorption bands of nonplanar tetraalkylporphyrins. J. Am. Chem. Soc. 125, 1253–1268 (2003)CrossRefGoogle Scholar
  17. 17.
    Meot-Ner, M., Adler, A.D.: Substituent effects in noncoplanar π-systems. ms-Porphins. J. Am. Chem. Soc. 97, 5107–5711 (1975)CrossRefGoogle Scholar
  18. 18.
    Murov, S.L., Carmichael, I., Hug, G.L.: Handbook of photochemistry, 2nd edn., pp. 345–348. Marcel Dekker, New York (1993)Google Scholar
  19. 19.
    Ivanova, Yu.B., Chizhova, N.V., Mamardashvili, N.Z., Pukhovskaya, S.G.: Influence of substituents structure and their electronic effects on acid-base and complexing properties of 5, 10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin. Russ. J. Gen. Chem. 84, 939–945 (2014)CrossRefGoogle Scholar
  20. 20.
    Ivanova, Y.B., Mamardashvili, N.Z., Nam, D.T., Glazunov, A.V., Semeykin, A.S., Pukhovskaya, S.G.: Synthesis and spectrophotometric study of deprotonation of octamethylporphyrin derivatives with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile. Russ. J. Gen. Chem. 84, 103–107 (2014)CrossRefGoogle Scholar
  21. 21.
    Berezin, B.D., Ivanova, Y.B., Sheinin, V.B.: The acid properties of dodecasubstituted porphyrins with a chemically active NH bond. Russ. J. Phys. Chem. 81, 1986–1991 (2007)CrossRefGoogle Scholar
  22. 22.
    Gouterman, M.:  Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In: Dolphin, D. (ed.) The Porphyrins, vol. 3, pp. 1–165. Academic Press, New York (1978)Google Scholar
  23. 23.
    Liulkovich, L.S., Kruk, M.M.: Configuration interaction upon nonplanar distortions of the tetrapyrrolic macrocycle. Proceedings of Belarusian State Technological University (BSTU). 170(6), 63–67 (2015)Google Scholar
  24. 24.
    Yamauchi, S., Matsukawa, Y., Ohba, Y., Iwaizumi, M.: State mixing in the excited triplet and singlet states of fluorine-substituted magnesium tetraphenylporphines studied by optical and time-resolved EPR spectroscopy. Inorg. Chem. 35, 2910–2914 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Svetlana G. Pukhovskaya
    • 1
  • Dao Tkhe Nam
    • 1
  • Yulia B. Ivanova
    • 2
  • Lizaveta S. Liulkovich
    • 3
  • Alexander S. Semeikin
    • 1
  • Sergei A. Syrbu
    • 1
  • Mikalai M. Kruk
    • 3
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussian Federation
  2. 2.G.A. Krestov Institute of Solution Chemistry of Russian Academy of SciencesIvanovoRussian Federation
  3. 3.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations