Recent advances in anion recognition

  • Marco Wenzel
  • Jan J. Weigand
Review Article


This micro review covers recent advances in anion recognition, such as selective developments in the receptor design. Applications to which anion receptors can be applied, for example anion extraction and transport, are highlighted.


Anion recognition Receptor development Anion extraction Anion transport 



The authors gratefully acknowledge financial support from Max Buchner Foundation (MBFSt 3558).


  1. 1.
    Gale, P.A., Howe, E.N.W., Wu, X.: Anion receptor chemistry. Chem 1(3), 351–422 (2016). doi: 10.1016/j.chempr.2016.08.004 CrossRefGoogle Scholar
  2. 2.
    Wenzel, M., Hiscock, J.R., Gale, P.A.: Anion receptor chemistry: highlights from 2010. Chem. Soc. Rev. 41, 480–520 (2012)CrossRefGoogle Scholar
  3. 3.
    Gale, P.A., Busschaert, N., Haynes, C.J.E., Karagiannidis, L.E., Kirby, I.L.: Anion receptor chemistry: highlights from 2011 and 2012. Chem. Soc. Rev. 43(1), 205–241 (2014). doi: 10.1039/c3cs60316d CrossRefGoogle Scholar
  4. 4.
    Zwicker, V.E., Liu, X., Yuen, K.K.Y., Jolliffe, K.A.: Triazole–containing zinc(II)dipicolylamine-functionalised peptides as highly selective pyrophosphate sensors in physiological media. Supramol. Chem. 28(1–2), 192–200 (2016). doi: 10.1080/10610278.2015.1122789 CrossRefGoogle Scholar
  5. 5.
    Zhong, D.-C., Lu, T.-B.: Molecular recognition and activation by polyaza macrocyclic compounds based on host-guest interactions. Chem. Commun. 52(68), 10322–10337 (2016). doi: 10.1039/c6cc03660k CrossRefGoogle Scholar
  6. 6.
    Toure, M., Charles, L., Chendo, C., Viel, S., Chuzel, O., Parrain, J.-L.: Straightforward and controlled shape access to efficient macrocyclic imidazolylboronium anion receptors. Chem. Eur. J. 22(26), 8937–8942 (2016). doi: 10.1002/chem.201601174 CrossRefGoogle Scholar
  7. 7.
    Savastano, M., Bazzicalupi, C., Garcia, C., Gellini, C., Lopez de la Torre, M.D., Mariani, P., Pichierri, F., Bianchi, A., Melguizo, M.: Iodide and triiodide anion complexes involving anion-π interactions with a tetrazine-based receptor. Dalton Trans. 46(14), 4518–4529 (2017). doi: 10.1039/c7dt00134g CrossRefGoogle Scholar
  8. 8.
    Savastano, M., Bazzicalupi, C., Giorgi, C., García-Gallarín, C., López de la Torre, M.D., Pichierri, F., Bianchi, A., Melguizo, M.: Anion complexes with tetrazine-based ligands: formation of strong anion–π interactions in solution and in the solid state. Inorg. Chem. 55(16), 8013–8024 (2016). doi: 10.1021/acs.inorgchem.6b01138 CrossRefGoogle Scholar
  9. 9.
    Ruiz-Botella, S., Vidossich, P., Ujaque, G., Peris, E.: Rim, side arms, and cavity: three sites for the recognition of anions by tetraazolium resorcinarene cavitands. Chem. Eur. J. 22(44), 15800–15806 (2016). doi: 10.1002/chem.201602916 CrossRefGoogle Scholar
  10. 10.
    Bhat, M.P., Jung, H.-Y., Losic, D., Kurkuri, M.D.: Anion sensors as logic gates: a close encounter? Chem. Eur. J. 22(18), 6148–6178 (2016). doi: 10.1002/chem.201504396 CrossRefGoogle Scholar
  11. 11.
    Clarke, H.J., Van Rossom, W., Horton, P.N., Light, M.E., Gale, P.A.: Anion transport and binding properties of N N′-(phenylmethylene)dibenzamide based receptors. Supramol. Chem. 28(1–2), 10–17 (2016). doi: 10.1080/10610278.2015.1034126 CrossRefGoogle Scholar
  12. 12.
    Kuwajima, S., Kikukawa, Y., Hayashi, Y.: Small-molecule anion recognition by a shape-responsive bowl-type dodecavanadate. Chem. Asian J. 12(15), 1909–1914 (2017). doi: 10.1002/asia.201700489 CrossRefGoogle Scholar
  13. 13.
    Vargas-Zúñiga, G.I., Sessler, J.L.: Pyrrole N–H anion complexes. Coord. Chem. Rev. 345, 281–296 (2017). doi: 10.1016/j.ccr.2017.04.004 CrossRefGoogle Scholar
  14. 14.
    Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P.A.: Applications of supramolecular anion recognition. Chem. Rev. 115(15), 8038–8155 (2015). doi: 10.1021/acs.chemrev.5b00099 CrossRefGoogle Scholar
  15. 15.
    Gale, P.A., Davis, J.T., Quesada, R.: Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 46(9), 2497–2519 (2017). doi: 10.1039/c7cs00159b CrossRefGoogle Scholar
  16. 16.
    Li, H., Valkenier, H., Judd, L.W., Brotherhood, P.R., Hussain, S., Cooper, J.A., Jurček, O., Sparkes, H.A., Sheppard, D.N., Davis, A.P.: Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nat. Chem. 8(1), 24–32 (2016). doi: 10.1038/nchem.2384 CrossRefGoogle Scholar
  17. 17.
    Gloe, K., Stephan, H., Grotjahn, M.: Where is the anion extraction going? Chem. Eng. Technol. 26(11), 1107–1117 (2003). doi: 10.1002/ceat.200306105 CrossRefGoogle Scholar
  18. 18.
    Gloe, K., Gloe, K., Wenzel, M., Lindoy, L.F., Li, F.: Supramolecular chemistry in solvent extraction. In: Moyer, B. A. (ed) Ion Exchange and Solvent Extraction. Ion Exchange and Solvent Extraction Series, pp. 1–48. CRC Press, Boca Raton (2013)Google Scholar
  19. 19.
    Ahmed, B.M., Calco, B., Mezei, G.: Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid-liquid extraction of the carbonate ion from water into aliphatic solvents. Dalton Trans. 45(20), 8327–8339 (2016). doi: 10.1039/c6dt00847j CrossRefGoogle Scholar
  20. 20.
    Warr, R.J., Bell, K.J., Gadzhieva, A., Cabot, R., Ellis, R.J., Chartres, J., Henderson, D.K., Lykourina, E., Wilson, A.M., Love, J.B., Tasker, P.A., Schroder, M.: A comparison of the selectivity of extraction of [PtCl6]2– by mono-, bi-, and tripodal receptors that address its outer coordination sphere. Inorg. Chem. 55(12), 6247–6260 (2016). doi: 10.1021/acs.inorgchem.6b00848 CrossRefGoogle Scholar
  21. 21.
    Carreira-Barral, I., Mato-Iglesias, M., de Blas, A., Platas-Iglesias, C., Tasker, P.A., Esteban-Gomez, D.: Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts. Dalton Trans. 46(10), 3192–3206 (2017). doi: 10.1039/c7dt00093f CrossRefGoogle Scholar
  22. 22.
    Fowler, C.J., Haverlock, T.J., Moyer, B.A., Shriver, J.A., Gross, D.E., Marquez, M., Sessler, J.L., Hossain, M.A., Bowman-James, K.: Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias. J. Am. Chem. Soc. 130, 14386 (2008)CrossRefGoogle Scholar
  23. 23.
    Moyer, B.A., Custelcean, R., Hay, B.P., Sessler, J.L., Bowman-James, K., Day, V.W., Kang, S.-O.: A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg. Chem. 52(7), 3473–3490 (2013). doi: 10.1021/ic3016832 CrossRefGoogle Scholar
  24. 24.
    Sessler, J.L., Gale, P.A., Cho, W.-S.: Anion receptor chemistry. The Royal Society of Chemistry, London (2006)Google Scholar
  25. 25.
    Qin, L., Hartley, A., Turner, P., Elmes, R.B.P., Jolliffe, K.A.: Macrocyclic squaramides: anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 7(7), 4563–4572 (2016). doi: 10.1039/c6sc01011c CrossRefGoogle Scholar
  26. 26.
    Emami Khansari, M., Mirchi, A., Pramanik, A., Johnson, C.R., Leszczynski, J., Hossain, M.A.: Remarkable hexafunctional anion receptor with operational urea-based inner cleft and thiourea-based outer cleft: novel design with high-efficiency for sulfate binding. Sci. Rep. 7(1), 6032 (2017). doi: 10.1038/s41598-017-05831-x CrossRefGoogle Scholar
  27. 27.
    He, Q., Kelliher, M., Bähring, S., Lynch, V.M., Sessler, J.L.: A Bis-calix[4]pyrrole enzyme mimic that constrains two oxoanions in close proximity. J. Am. Chem. Soc. 139(21), 7140–7143 (2017). doi: 10.1021/jacs.7b02329 CrossRefGoogle Scholar
  28. 28.
    He, Q., Peters, G.M., Lynch, V.M., Sessler, J.L.: Recognition and extraction of cesium hydroxide and carbonate using a neutral multitopic ion-pair receptor. Angew. Chem. Int. Ed. (2017). doi: 10.1002/anie.201705788 Google Scholar
  29. 29.
    Seipp, C.A., Williams, N.J., Bryantsev, V.S., Moyer, B.A.: A simple guanidinium motif for the selective binding and extraction of sulfate. Sep. Sci. Technol. (2017). doi: 10.1080/01496395.2017.1318922 Google Scholar
  30. 30.
    Gale, P.A.: From anion receptors to transporters. Acc. Chem. Res. 44, 216 (2011)CrossRefGoogle Scholar
  31. 31.
    Lang, C., Mohite, A., Deng, X., Yang, F., Dong, Z., Xu, J., Liu, J., Keinan, E., Reany, O.: Semithiobambus[6]uril is a transmembrane anion transporter. Chem. Commun. 53(54), 7557–7560 (2017). doi: 10.1039/c7cc04026a CrossRefGoogle Scholar
  32. 32.
    Havel, V., Babiak, M., Sindelar, V.: Modulation of bambusuril anion affinity in water. Chem. Eur. J. 23(37), 8963–8968 (2017). doi: 10.1002/chem.201701316 CrossRefGoogle Scholar
  33. 33.
    Cornes, S.P., Sambrook, M.R., Beer, P.D.: Selective perrhenate recognition in pure water by halogen bonding and hydrogen bonding alpha-cyclodextrin based receptors. Chem. Commun. 53(27), 3866–3869 (2017). doi: 10.1039/c7cc01605k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Food ChemistryTU DresdenDresdenGermany

Personalised recommendations