A polyrotaxane gel using boronic acid-appended γ-cyclodextrin as a hybrid cross-linker

  • Wataru Uchida
  • Maiki Yoshikawa
  • Tomohiro Seki
  • Ryotaro Miki
  • Toshinobu Seki
  • Takashi Fujihara
  • Yoshihiro Ishimaru
  • Yuya Egawa
Original Article


A boronic acid-appended γ-cyclodextrin (BA-CyD) was synthesized as a hybrid cross-linker of polyvinyl alcohol (PVA) to form a new type of hydrogel. The CyD moiety of BA-CyD forms an inclusion complex with the PVA chain to produce a mechanically interlocking structure. At the same time, the BA moiety of BA-CyD forms covalent bonds with the 1,3-diol moieties of PVA. On the basis of these two modes of interaction, the hybrid cross-linker connects two PVA chains, thus resulting in the formation of a hydrogel. To investigate the possibility of this hydrogel becoming the basis for an intelligent material for drug delivery, sugar-responsive drug release from the hydrogel was demonstrated.


Cyclodextrin Boronic acid Polyrotaxane Gel Intelligent material Sugar response 

Supplementary material

10847_2017_755_MOESM1_ESM.pdf (112 kb)
Supplementary material 1 (PDF 112 KB)


  1. 1.
    Hennink, W.E., van Nostrum, C.F.: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64, 223–236 (2012)CrossRefGoogle Scholar
  2. 2.
    Ito, K.: Novel cross-Linking concept of polymer network: Synthesis, structure, and properties of slide-Ring gels with freely movable junctions. Polym. J. 39, 489–499 (2007)CrossRefGoogle Scholar
  3. 3.
    Araki, J., Ito, K.: Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter. 3, 1456–1473 (2007)CrossRefGoogle Scholar
  4. 4.
    Girek, T.: Cyclodextrin-based rotaxanes. J. Incl. Phenom. Macrocycl. Chem. 74, 1–21 (2012)CrossRefGoogle Scholar
  5. 5.
    Takata, T.: Polyrotaxane and polyrotaxane network: Supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym. J. 38, 1–20 (2006)CrossRefGoogle Scholar
  6. 6.
    Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature. 356, 325–327 (1992)CrossRefGoogle Scholar
  7. 7.
    Harada, A.: Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001)CrossRefGoogle Scholar
  8. 8.
    Okumura, Y., Ito, K.: The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001)CrossRefGoogle Scholar
  9. 9.
    Kato, K., Yasuda, T., Ito, K.: Viscoelastic properties of slide-ring gels reflecting sliding dynamics of partial chains and entropy of ring components. Macromolecules. 46, 310–316 (2013)CrossRefGoogle Scholar
  10. 10.
    Ito, K.: Slide-ring materials using cyclodextrin. Chem. Pharm. Bull. 65, 326–329 (2017)CrossRefGoogle Scholar
  11. 11.
    Watahiki, R., Sato, K., Suwa, K., Niina, S., Egawa, Y., Seki, T., Anzai, J.: Multilayer films composed of phenylboronic acid-modified dendrimers sensitive to glucose under physiological conditions. J. Mater. Chem. B 2, 5809–5817 (2014)CrossRefGoogle Scholar
  12. 12.
    Anzai, J.: Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives. Mater. Sci. Eng. C 67, 737–746 (2016)CrossRefGoogle Scholar
  13. 13.
    Egawa, Y., Seki, T., Takahashi, S., Anzai, J.I.: Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater. Sci. Eng. C 31, 1257–1264 (2011)CrossRefGoogle Scholar
  14. 14.
    James, T.D.: Self and directed assembly: people and molecules. Beilstein J. Org. Chem. 12, 391–405 (2016)CrossRefGoogle Scholar
  15. 15.
    Hernández, R., Rusa, M., Rusa, C.C., López, D., Mijangos, C., Tonelli, A.E.: Controlling PVA hydrogels with γ-cyclodextrin. Macromolecules 37, 9620–9625 (2004)CrossRefGoogle Scholar
  16. 16.
    Seki, T., Abe, K., Egawa, Y., Miki, R., Juni, K., Seki, T.: A pseudopolyrotaxane for glucose-responsive insulin release: the effect of binding ability and spatial arrangement of phenylboronic acid group. Mol. Pharm. 13, 3807–3815 (2016)CrossRefGoogle Scholar
  17. 17.
    Harada, A., Hashidzume, A., Takashima, Y.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)CrossRefGoogle Scholar
  18. 18.
    Harada, A., Hashidzume, A., Yamaguchi, H., Takashima, Y.: Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009)CrossRefGoogle Scholar
  19. 19.
    Harada, A., Li, J., Kamachi, M., Kitagawa, Y., Katsube, Y.: Structures of polyrotaxane models. Carbohydr. Res. 305, 127–129 (1997)CrossRefGoogle Scholar
  20. 20.
    Terao, T., Maeda, S., Saika, A.: High-Resolution Solid-state 13C NMR of poly(viny1 alcohol): enhancement of tacticity splitting by intramolecular hydrogen bonds. Macromolecules 16, 1535–1538 (1983)CrossRefGoogle Scholar
  21. 21.
    Dai, L., Yu, S.: Effect of degree of saponification on structural and property change of poly (vinyl alcohol) fibers. Polymer. Adv. Tech. 14, 449–457 (2003)CrossRefGoogle Scholar
  22. 22.
    Uyar, T., Aslan, E., Tonelli, A.E., Hacaloglu, J.: Pyrolysis mass spectrometry analysis of poly(vinyl acetate), poly(methyl methacrylate) and their blend coalesced from inclusion compounds formed with γ-cyclodextrin. Polym. Degrad. Stab. 91, 1–11 (2006)CrossRefGoogle Scholar
  23. 23.
    Yan, J., Springsteen, G., Deeter, S., Wang, B.: The relationship among pK a, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron. 60, 11205–11209 (2004)CrossRefGoogle Scholar
  24. 24.
    Culver, H.R., Clegg, J.R., Peppas, N.A.: Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50, 170–178 (2017)CrossRefGoogle Scholar
  25. 25.
    Meng, F.H., Zhong, Z.Y., Feijen, J.: Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 10, 197–209 (2009)CrossRefGoogle Scholar
  26. 26.
    Matsumoto, A., Ishii, T., Nishida, J., Matsumoto, H., Kataoka, K., Miyahara, Y.: A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesJosai UniversitySakadoJapan
  2. 2.Research and Development Bureau, Comprehensive Analysis Center for ScienceSaitama UniversitySaitamaJapan
  3. 3.Division of Material Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan

Personalised recommendations