Fluorometric and molecular modeling deciphering the non-covalent interaction between cyromazine and human serum albumin

Original Article
  • 77 Downloads

Abstract

Cyromazine (CMZ) had been believed to be one of the safest pesticides and widely used for many years until its carcinogenesis was revealed recently. In this work, the interaction between cyromazine and human serum albumin (HSA) was systematically investigated by multiple spectroscopic methods and molecular docking techniques using warfarin and flufenamic acid as probes. The results demonstrated the fluorescence of HSA had been quenched by CMZ through static mechanism, with new non-covalent complexes formed at ground state. Fluorescence probe experiments indicated CMZ bound to Sudlow’s site I in subdomain IIA of HSA, having no competition with site marker in site II. The number of binding sites, equilibrium constants and thermodynamic parameters were calculated by monitoring the binding equilibriums at different temperatures. The positive enthalpy change (ΔH θ) and entropy change (ΔS θ) implied the binding was mainly conducted by hydrophobic interactions. The binding was an endothermic, spontaneous (ΔG θ < 0) and entropy-driven process which made the energy distribution of the system more evenly. The force of interaction and the conformation of binding pocket were displayed by molecular simulation and discussed at molecular level. Circular dichroism (CD) spectra indicated distorted α-helix content of HSA decreased while other fine secondary structure increased when CMZ was added.

Keywords

Cyromazine Protein-binding Fluorescence probe Molecular docking Thermodynamics 

Notes

Acknowledgements

The authors gratefully acknowledge the fund support from Research Foundation of Education Bureau of Hubei Province of China (D20174301, T201719), Superior Subjects Project of Jingchu University of Technology (17020303), Hubei Natural Science Foundation (2016CFB149) and Scientific Research Project of Jingchu University of Technology (QN201601, ZR201509).

References

  1. 1.
    Friedel, T., Hales, D.F., Birch, D.: Cyromazine-induced effects on the larval cuticle of the sheep blowfly, Lucilia cuprina: ultrastructural evidence for a possible mode of action. Pestic. Biochem. Phys. 31(1), 99–107 (1988). doi: 10.1016/0048-3575(88)90034-X CrossRefGoogle Scholar
  2. 2.
    Heikal, T.M., Mossa, A.T.H.: Cyromazine and chlorpyrifos induced renal toxicity in rats: The ameliorated effects of green tea extract. J. Environ. Anal. Toxicol. 02(05), 146–152 (2012). doi: 10.4172/2161-0525.1000146 CrossRefGoogle Scholar
  3. 3.
    Amelin, V.G., Andoralov, A.M.: High-performance liquid chromatography–time-of-flight mass spectrometry in the identification and determination of 111 pesticides in food, feed, water, and soil. J. Anal. Chem. 71(1), 82–93 (2016). doi: 10.1134/S1061934815120035 CrossRefGoogle Scholar
  4. 4.
    Nascimento, C.F., Rocha, D.L., Rocha, F.R.P.: A fast and environmental friendly analytical procedure for determination of melamine in milk exploiting fluorescence quenching. Food Chem. 169, 314–319 (2015). doi: 10.1016/j.foodchem.2014.07.144 CrossRefGoogle Scholar
  5. 5.
    Ai, K., Liu, Y., Lu, L.: Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 131(27), 9496–9497 (2009). doi: 10.1021/ja9037017 CrossRefGoogle Scholar
  6. 6.
    Melnick, R.L., Boorman, G.A., Haseman, J.K., Montali, R.J., Huff, J.: Urolithiasis and bladder carcinogenicity of melamine in rodents. Toxicol. Appl. Pharm. 72(2), 292–303 (1984). doi: 10.1016/0041-008X(84)90314-4 CrossRefGoogle Scholar
  7. 7.
    Le, T., Yan, P., Xu, J., Hao, Y.: A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem. 138(2–3), 1610–1615 (2013). doi: 10.1016/j.foodchem.2012.11.077 CrossRefGoogle Scholar
  8. 8.
    Heikal, T.M., Mossa, A.-T.H., Ibrahim, A.W., Abdel-Hamid, H.F.: Oxidative damage and reproductive toxicity associated with cyromazine and chlorpyrifos in male rats: the protective effects of green tea extract. Res. J. Environ. Toxicol. 8(2), 53–67 (2014). doi: 10.3923/rjet.2014.53.67 CrossRefGoogle Scholar
  9. 9.
    Liu, J., Zhong, Y., Liu, J., Zhang, H., Xi, J., Wang, J.: An enzyme linked immunosorbent assay for the determination of cyromazine and melamine residues in animal muscle tissues. Food Control. 21(11), 1482–1487 (2010). doi: 10.1016/j.foodcont.2010.04.018 CrossRefGoogle Scholar
  10. 10.
    Zheng, X., Zhao, A., Xie, G., Chi, Y., Zhao, L., Li, H., Wang, C., Bao, Y., Jia, W., Luther, M., Su, M., Nicholson, J.K., Jia, W.: Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 5(172), 172ra122–172ra122 (2013). doi: 10.1126/scitranslmed.3005114 CrossRefGoogle Scholar
  11. 11.
    Puschner, B., Poppenga, R.H., Lowenstine, L.J., Filigenzi, M.S., Pesavento, P.A.: Assessment of melamine and cyanuric acid toxicity in cats. J. Vet. Diagn. Invest. 19(6), 616–624 (2007). doi: 10.1177/104063870701900602 CrossRefGoogle Scholar
  12. 12.
    Yan, H., Wu, J., Dai, G., Zhong, A., Yang, J., Liang, H., Pan, F.: Interaction between melamine and bovine serum albumin: spectroscopic approach and density functional theory. J. Mol. Struct. 967(1–3), 61–64 (2010). doi: 10.1016/j.molstruc.2009.12.039 CrossRefGoogle Scholar
  13. 13.
    Zadmard, R., Darvishi, S., Akbari-Moghaddam, P.: Synthesis and protein binding properties of novel highly functionalized Calix[4]arene. J. Incl. Phenom. Macro. 86(1), 27–32 (2016). doi: 10.1007/s10847-016-0637-9 CrossRefGoogle Scholar
  14. 14.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009). doi: 10.1002/jcc.21256 CrossRefGoogle Scholar
  15. 15.
    Sekar, G., Sugumar, S., Mukherjee, A., Chandrasekaran, N.: Multiple spectroscopic studies of the structural conformational changes of human serum albumin—essential oil based nanoemulsions conjugates. J. Lumin. 161, 187–197 (2015). doi: 10.1016/j.jlumin.2014.12.058 CrossRefGoogle Scholar
  16. 16.
    Tu, B., Chen, Z.-F., Liu, Z.-J., Li, R.-R., Ouyang, Y., Hu, Y.-J.: Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin. RSC Adv. 5(89), 73290–73300 (2015). doi: 10.1039/C5RA12824B CrossRefGoogle Scholar
  17. 17.
    Steblecka, M., Wolszczak, M., Szajdzinska-Pietek, E.: Interaction of 1-pyrene sulfonic acid sodium salt with human serum albumin. J. Lumin. 172, 279–285 (2016). doi: 10.1016/j.jlumin.2015.12.038 CrossRefGoogle Scholar
  18. 18.
    Cheng, H., Zou, T., Xu, Y., Wang, Y., Wu, A., Dai, J., Zhang, Y., Liu, Y.: Investigations on the interactions between naphthalimide-based anti-tumor drugs and human serum albumin by spectroscopic and molecular modeling methods. Luminescence. 31(1), 88–95 (2016). doi: 10.1002/bio.2928 CrossRefGoogle Scholar
  19. 19.
    Xu, Z.-Q., Yang, Q.-Q., Lan, J.-Y., Zhang, J.-Q., Peng, W., Jin, J.-C., Jiang, F.-L., Liu, Y.: Interactions between carbon nanodots with human serum albumin and γ-globulins: the effects on the transportation function. J. Hazard Mater. 301, 242–249 (2016). doi: 10.1016/j.jhazmat.2015.08.062 CrossRefGoogle Scholar
  20. 20.
    Hao, A., Guo, X., Wu, Q., Sun, Y., Cong, C., Liu, W.: Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods. J. Lumin. 170(Part 1), 90–96 (2016). doi: 10.1016/j.jlumin.2015.10.002 CrossRefGoogle Scholar
  21. 21.
    Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 20(11), 3096–3102 (1981). doi: 10.1021/bi00514a017 CrossRefGoogle Scholar
  22. 22.
    Sudlow, G., Birkett, D.J., Wade, D.N.: Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12, 1052–1061 (1976)Google Scholar
  23. 23.
    Hosainzadeh, A., Gharanfoli, M., Saberi, M., Chamani, J.: Probing the interaction of human serum albumin with bilirubin in the presence of aspirin by multi-spectroscopic, molecular modeling and zeta potential techniques: insight on binary and ternary systems. J. Biomol. Struct. Dyn. 29(5), 1013–1050 (2012). doi: 10.1080/073911012010525029 CrossRefGoogle Scholar
  24. 24.
    He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature. 358(6383), 209–215 (1992)CrossRefGoogle Scholar
  25. 25.
    Zhang, H.-x., Xiong, H.-x., Li, L.-w.: Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method. Spectrochim. Acta A. 161, 88–94 (2016). doi: 10.1016/j.saa.2016.02.014 CrossRefGoogle Scholar
  26. 26.
    Jattinagoudar, L., Meti, M., Nandibewoor, S., Chimatadar, S.: Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods. Spectrochim. Acta A. 156, 164–171 (2016). doi: 10.1016/j.saa.2015.11.026 CrossRefGoogle Scholar
  27. 27.
    Singha Roy, A., Utreja, J., Badhei, S.: Characterization of the binding of fisetin and morin with chicken egg lysozyme using spectroscopic and molecular docking methods. J. Incl. Phenom. Macro. 81(3), 385–394 (2015). doi: 10.1007/s10847-014-0465-8 CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.-Z., Zhou, B., Zhang, X.-P., Huang, P., Li, C.-H., Liu, Y.: Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods. J. Hazard Mater. 163(2–3), 1345–1352 (2009). doi: 10.1016/j.jhazmat.2008.07.132 CrossRefGoogle Scholar
  29. 29.
    Hegde, A.H., Sandhya, B., Seetharamappa, J.: Investigations to reveal the nature of interactions of human hemoglobin with curcumin using optical techniques. Int. J. Biol. Macromol. 52(1), 133–138 (2013). doi: 10.1016/j.ijbiomac.2012.09.015 CrossRefGoogle Scholar
  30. 30.
    Lebedeva, N.S., Gubarev, Y.A., Koifman, O.I.: The interaction of cationic and anionic porphyrins with the bovine serum albumin in borate buffer. J. Incl. Phenom. Macro. 1–8 (2017). doi: 10.1007/s10847-017-0718-4

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Drug Synthesis and OptimizationJingchu University of TechnologyJingmenPeople’s Republic of China
  2. 2.College of Chemistry and Life ScienceChangchun University of TechnologyChangchunPeople’s Republic of China

Personalised recommendations