Advertisement

Quantum chemical investigations on hydrogen bonding interactions established in the inclusion complex β-cyclodextrin/benzocaine through the DFT, AIM and NBO approaches

  • Hassina Attoui Yahia
  • Ouassila Attoui Yahia
  • Djameleddine Khatmi
  • Roubila Belghiche
  • Amel Bouzitouna
Short Communication

Abstract

Structure and stability of an inclusion complex formed by Benzocaine (BZC) and β-cyclodextrin (β-CD) were investigated computationally using different levels of theory. The conformational research based on PM6 method allowed reach two minimum-energy structures: model A and model B. The lowest conformers have been exposed to fully geometry optimization employing four DFT functionals: B3LYP, CAM-B3LYP, M05-2X and M06-2X. The performed DFT calculations have identified the model B, in which the amino group is located at the primary face of β-CD, as the most stable complex by an amount up to −40 kcal/mol. Further, the greater stabilization of model B in respect to model A, has been ascertained through AIM and NBO analyses which clarified the main hydrogen bonds HBs interactions governing the reactivity of BZC inside the hydrophobic cavity of β-CD. Finally, the estimated isotropic 1H nuclear magnetic shielding constants generated from the gauge-including-atomic-orbital calculation have been analyzed and then compared with the available experimental data.

Keywords

Benzocaine/β-cyclodextrin Hydrogen bond DFT AIM NBO GIAO 

Notes

Acknowledgements

The authors would like to thank the General Direction of Scientific Research and Technological Development (DGRSDT) and the National Research Fund (FNR) for funding this work, through project PNR (8/u23/830).

References

  1. 1.
    Li, N., Zhang, Y.H., Xiong, X.L., Li, Z.G., Jin, H.H., Wu, Y.N.: Study of the physicochemical properties of trimethoprim with beta-cyclodextrin in solution. J. Pharm. Biomed. Anal. 38, 370–374 (2005)CrossRefGoogle Scholar
  2. 2.
    Al-Marzouqi, A., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 57, 223–231 (2007)CrossRefGoogle Scholar
  3. 3.
    Jullian, C., Alfaro, M., Zapata-Torres, G., Olea-Azar, C.: Inclusion complexes of cyclodextrins with galangin: a thermodynamic and reactivity study. J. Solut. Chem. 39, 1168–1177 (2010)CrossRefGoogle Scholar
  4. 4.
    De Sousa, S.M.R., Fernandes, S.A., De Almeida, W.B., Guimarães, L., Abranches, P.A.S., Varejão, E.V.V., Nascimento, C.S.: Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene. Chem. Phys. Lett. 646, 52–55 (2016)CrossRefGoogle Scholar
  5. 5.
    Di Marino, A., Mendicuti, F.: Fluorimetric and molecular mechanics study of the inclusion complex of 2-quinoxalinyl-phenoxathiin with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57, 97–601 (2007)Google Scholar
  6. 6.
    Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  7. 7.
    Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1168 (1996)CrossRefGoogle Scholar
  8. 8.
    Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13, 325–331 (2001)CrossRefGoogle Scholar
  9. 9.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  10. 10.
    Strichartz, G.R., Sanchez, V., Arthur, G.R., Chafetz, R., Martin, D.: Fundamental properties of local anesthetics. 2. Measured octanol: buffer partition coefficients and pka values of clinically used Drugs. Anesth. Analg. 71, 158–170 (1990)CrossRefGoogle Scholar
  11. 11.
    Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Junior, S.O., De Paula, E.: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 39, 956–963 (2005)CrossRefGoogle Scholar
  12. 12.
    Mic, M., Pı̂rnău, A., Bogdan, A., Turcu, I.: Inclusion complex of benzocaine and β-cyclodextrin: NMR and isothermal titration calorimetry studies. AIP Conf. Proc. 1565, 63–66 (2013). doi: 10.1063/1.4833697 CrossRefGoogle Scholar
  13. 13.
    Szejtli, J.: Cylodextrin in drug formulations: Part I. Pharm. Technol. Int. 3, 15–23 (1991)Google Scholar
  14. 14.
    Mehdi, D., Esrafili, V.A.: A theoretical investigation of hydrogen bonding effects on oxygen and hydrogen chemical shielding tensors of aspirin. Struct. Chem. 22, 1195–1203 (2011)CrossRefGoogle Scholar
  15. 15.
    Attoui Yahia, O., Khatmi, D.E.: Theoretical study of the inclusion processes of venlaxine with β-cyclodextrin. J. Mol. Struct. 912, 38–43 (2009)CrossRefGoogle Scholar
  16. 16.
    Yan, C.L., Xiu, Z.L., Li, X.H., Hao, C.: Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)- epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007)CrossRefGoogle Scholar
  17. 17.
    Kicuntod, J., Khuntawee, W., Wolschann, P., Pongsawasdi, P., Chavasiri, W., Kungwan, N., Rungrotmongkol, T.: Inclusion complexation of pinostrobin with various cyclodextrine derivatives. J. Mol. Graph. Model. 63, 91–98 (2016)CrossRefGoogle Scholar
  18. 18.
    José, P., Carrasco, C., den-Haan, H., Peña-García, J., Contreras-Garcia, J., Pérez-Sánchez, H.: : Exploiting the cyclodextrins ability for antioxidants encapsulation: a computational approach to carnosol and carnosic acid embedding. Comput. Theor. Chem. 1077, 65–73 (2016)CrossRefGoogle Scholar
  19. 19.
    Parr, R.G., Wang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)Google Scholar
  20. 20.
    Debnath, T., Saha, J.K., Banu, T., Ash, T., Das, A.K.: Structural and thermodynamic aspects of Lin@Cx endohedral metallofullerenes: a DFT approach. Theor. Chem. Acc. 135, 1–19 (2016)CrossRefGoogle Scholar
  21. 21.
    Siva, S., Nayaki, S.K., Rajendiran, N.: Spectral and molecular modeling investigations of supramolecular complexes of mefenamic acid and aceclofenac with α- and β-cyclodextrin. J. Mol. Struct. 1067, 252–260 (2014)CrossRefGoogle Scholar
  22. 22.
    Hadjar, S., Khatmi, D.E.: Electronic Structure and H-Bond Interactions in β-cyclodextrin/piroxicam complex: J. Comput. Theor. Nanosci. 9, 2101–2106 (2012)Google Scholar
  23. 23.
    ChemBio3D Ultra (version 13.0, Cambridge software)Google Scholar
  24. 24.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988)CrossRefGoogle Scholar
  25. 25.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  26. 26.
    Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-Type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)CrossRefGoogle Scholar
  28. 28.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)CrossRefGoogle Scholar
  29. 29.
    Marcano, E., Squitieri, E., Murgich, J., Soscún, H.: Conformational dependence of the second hyperpolarizability of quadrupolar molecules. J. Mol. Struct. 911, 81–87 (2009)CrossRefGoogle Scholar
  30. 30.
    Thiel, W., Voityuk, A.A.: Extention of MNDO formalism to d orbitals: parameters and results for the second-row elements and for the zinc group. J. Phys. Chem. 100, 616–626 (1996)CrossRefGoogle Scholar
  31. 31.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)CrossRefGoogle Scholar
  32. 32.
    Zhao, Y., Schultz, N.E., Truhlar, D.G.: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006)CrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  34. 34.
    Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)Google Scholar
  35. 35.
    Matta, C.F., Boyd, R.J.: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley, Weinheim (2007)CrossRefGoogle Scholar
  36. 36.
    Biegler-Koning, F., Schonbohm, J., Bayles, D.: A program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545–559 (2001)CrossRefGoogle Scholar
  37. 37.
    Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)CrossRefGoogle Scholar
  38. 38.
    Weinhold, F., Klein, F.: R.A.: What is a hydrogen bond? Resonance covalency in the supramolecular domain. Chem. Educ. Res. Pract. 15, 276–285 (2014)CrossRefGoogle Scholar
  39. 39.
    Barfiled, M., Fagerness, P.: Density Functional Theory/GIAO Studies of the 13C, 15N and 1H NMR chemical shifts in aminopyrimidines and aminobenzenes: relationships to electron densities and amine group orientations. J. Am. Chem. Soc. 119, 8699–8711 (1977)CrossRefGoogle Scholar
  40. 40.
    Frisch, M.J., et al.: Gaussian 09. Gaussian, Inc., Pittsburgh (2009)Google Scholar
  41. 41.
    Dennington, R., Keith, T., Millam, J.: Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009)Google Scholar
  42. 42.
    Lachi, N., Khatmi, D.E., Djemil, R.: Theoretical study of the inclusion processes of octopamine with β-cyclodextrin: PM6, ONIOM, and NBO analysis. Comptes Rend. Chim. 17, 1169–1175 (2014)CrossRefGoogle Scholar
  43. 43.
    Paczkowska, M., Mizera, M., Powałowska, D.S., Lewandowska, K., Błaszczak, W., Gościańska, J., Pietrzak, R., Cielecka-Piontek, J.: β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur. J. Pharm. Biopharm. 99, 24–34 (2016)CrossRefGoogle Scholar
  44. 44.
    Suliman, F.E.O., Elbashir, A.A.: Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: a molecular modeling approach. J. Mol. Struct. 1019, 43–49 (2012)CrossRefGoogle Scholar
  45. 45.
    Rajendiran, N., Jenita, M.J.: Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins. Spectrochim. Acta Mol. Biomol. Spectrosc. A 136, 1349–1357 (2015)CrossRefGoogle Scholar
  46. 46.
    Hohenstein, E.G., Chill, S.T., Sherrill, C.D.: Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 4, 1996–2000 (2008)CrossRefGoogle Scholar
  47. 47.
    Car, Z., Kodrin, I., Pozar, J., Ribi, R., Kovacevi, D., Petrovi, V.: Experimental and computational study of the complexation of adamantyl glycosides with β-cyclodextrin. Tetrahedron 69, 8051–8063 (2013)CrossRefGoogle Scholar
  48. 48.
    Kumar, P.S.V., Vendra, V.R., Subramanian, V.: Bader’s theory of atoms in molecules (AIM) and its Applications to chemical bonding. J. Chem. Sci. 10, 1527–1536 (2016)CrossRefGoogle Scholar
  49. 49.
    Rozas, I., Alkorta, I., Elguero, J.: The behaviour of ylides containing N, O, and C atoms, as hydrogen bond acceptors. J. Am. Chem. Soc. 122, 11154–11161 (2000)CrossRefGoogle Scholar
  50. 50.
    Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170–173 (1998)CrossRefGoogle Scholar
  51. 51.
    Weinhold, F., Landis, C.R., Glendening, E.D.: What is NBO Analysis and How is it Useful? Int. Rev. Phys. Chem. 35, 399–440 (2016)CrossRefGoogle Scholar
  52. 52.
    Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceBadji-Mokhtar UniversityAnnabaAlgeria
  2. 2.Applied Organic Chemistry Laboratory, Department of Chemistry, Faculty of ScienceBadji-Mokhtar UniversityAnnabaAlgeria
  3. 3.Computational Chemistry and Nanostructures LaboratoryUniversity 8 May 45 of GuelmaGuelmaAlgeria

Personalised recommendations