Application of cyclodextrins in cancer treatment

  • Neng Qiu
  • Xuebing Li
  • Junda Liu
Review Article


Cancer is one of the major fatal diseases. Chemotherapy is a typical treatment method that uses a combination of drugs to either destroy cancer cells or slow down the growth of cancer cells. However, most of the cytotoxic chemotherapeutic drugs are water insoluble resulting in formulation difficulty. One promising strategy is to use cyclodextrins (CDs) which have been widely employed to enhance the solubility, bioavailability, stability and safety of drug molecules by forming non covalent inclusion complexes. The objective of this review is to explain the use of CDs in the different approaches for cancer treatment. Of specific interest is that CDs are shown to have anticancer activity both in vitro and in vivo. The use of CDs as anticancer agent and the possible mechanism to inhibit cancer cell growth are discussed. CDs/anti-neoplastic-drug complexes with improved solubility, increased stability and enhanced anti-cancer activity are described and possible future applications are discussed. Use and their advantages of CDs in the different drug delivery systems like liposomes, conjugates, nanoparticles and siRNA carriers for cancer treatment are detailed in this review. These CDs modified delivery system for anticancer drugs are shown to provide improved encapsulation, prolonged release, increased therapeutic efficacy and reduced toxicity. Furthermore, there is a prerequisite to exploit the utility of CDs and CDs-based carriers using in vivo tumor models for pharmacokinetics, pharmacodynamics and toxicity studies to validate their safety and efficacy. In future, we believe that CDs and CDs-based delivery system for anticancer drugs have great potential to serve as an alternative for cancer treatment.


Cyclodextrin Anti-cancer, Inclusion complex Delivery Solubilization 



The authors are thankful to National Natural Science Foundation of China (NSFC) (21606025), and the foundation for the Youth Scholars of Chengdu University of Technology (10912-KYGG201517) for providing financial assistance relating to this work.


  1. 1.
    Dragojevic, S., Ryu, J.S., Raucher, D.: Polymer-based prodrugs: improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules 20, 21750–21769 (2015)CrossRefGoogle Scholar
  2. 2.
    Sawicki, E.: Solid Dispersions in Oncology: A Solution to Solubility-Limited Oral Drug Absorption. Netherlands Cancer Institute, Amsterdam (2017)Google Scholar
  3. 3.
    Savjani, K.T., Gajjar, A.K., Savjani, J.K.: Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 195727 (2012)Google Scholar
  4. 4.
    Göktürk, S., Çalışkan, E., Talman, R.Y., Var, U.: A study on solubilization of poorly soluble drugs by cyclodextrins and micelles: complexation and binding characteristics of sulfamethoxazole and trimethoprim. Sci. World J. 2012, 718791 (2012)Google Scholar
  5. 5.
    Radu, C.D., Parteni, O., Ochiuz, L.: Applications of cyclodextrins in medical textiles-review. J. Control. Release. 224, 146–57 (2016)CrossRefGoogle Scholar
  6. 6.
    Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  7. 7.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)CrossRefGoogle Scholar
  8. 8.
    Duo, J., Fletcher, H., Stenken, J.A.: Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens. Bioelectron. 22, 449–457 (2006)CrossRefGoogle Scholar
  9. 9.
    Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453, 167–180 (2013)CrossRefGoogle Scholar
  10. 10.
    Szejtli, J.: Cylodextrin in drug formulations: part I. Pharm. Technol. Int. 15, 36–44 (1991)Google Scholar
  11. 11.
    Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005)CrossRefGoogle Scholar
  12. 12.
    Muñoz-Botella, S., Del Castillo, B., Martin, M.A.: Cyclodextrins: properties and applications of inclusion complex formation. Ars Pharm. 36, 187–198 (1995)Google Scholar
  13. 13.
    Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  14. 14.
    Schneiderman, E., Stalcup, A.M.: Cyclodextrins: a versatile tool in separation science. J. Chromatogr. B 745, 83–102 (2000)CrossRefGoogle Scholar
  15. 15.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  16. 16.
    Liu, L., Guo, Q.X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002)CrossRefGoogle Scholar
  17. 17.
    Archontaki, H.A., Vertzoni, M.V., Athanassiou Malaki, M.H.: Study on the inclusion complexes of bromazepam with beta­ and beta-hydroxypropyl­cyclodextrins. J. Pharm. Biomed. Anal. 28, 761–769 (2002)CrossRefGoogle Scholar
  18. 18.
    Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control Release 123, 78–99 (2007)CrossRefGoogle Scholar
  19. 19.
    Arima, H., Yunomae, K., Miyake, K., Irie, T., Hirayama, F., Uekama, K.: Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 90, 690–701 (2001)CrossRefGoogle Scholar
  20. 20.
    Arima, H., Miyaji, T., Irie, T., Hirayama, F., Uekama, K.: Enhancing effect of hydroxypropyl beta­cyclodextrin on cutaneous penetration and activation of Ethyl­4­biphenyl acetate in hairless mouse skin. Eur. J. Pharm. Sci. 6, 53–59 (2001)CrossRefGoogle Scholar
  21. 21.
    Arias, M.J., Moyano, J.R., Muñoz., P., Ginés, J.M., Justo, A., Giordano, F.: Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev. Ind. Pharm. 26, 253–259 (2000)CrossRefGoogle Scholar
  22. 22.
    Tiwari, G., Tiwari, R., Rai, A.K.: Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2, 72–79 (2010)CrossRefGoogle Scholar
  23. 23.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)CrossRefGoogle Scholar
  24. 24.
    Arima, H., Motoyama, K., Irie, T.: Recent findings on safety profiles of cyclodextrins, cyclodextrin conjugates, and polypseudorotaxanes. In: Bilensoy, E. (ed.) Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. Wiley, Hoboken (2011)Google Scholar
  25. 25.
    Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86, 147–162 (1997)CrossRefGoogle Scholar
  26. 26.
    Stevens, D.A.: Itraconazole in cyclodextrin solution. Pharmacotherapy. 19, 603–611 (1999)CrossRefGoogle Scholar
  27. 27.
    Committee for Human Medicinal Products.: Background review for cyclodextrins used as excipients. European Medicines Agency, pp. 1–17 (2014)Google Scholar
  28. 28.
    Irie, T., Otagiri, M., Sunada, M., Uekama, K., Ohtani, Y., Yamada, Y., Sugiyama, Y.: Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn. 5, 741–744 (1982)CrossRefGoogle Scholar
  29. 29.
    Fauvelle, F., Debouzy, J.C., Crouzy, S., Göschl, M., Chapron, Y.: Mechanism of alpha-cyclodextrin-induced hemolysis. 1. The two-step extraction of phosphatidylinositol from the membrane. J. Pharm. Sci. 86, 935–943 (1997)CrossRefGoogle Scholar
  30. 30.
    Ohtani, Y., Irie, T., Uekama, K., Fukunaga, K., Pitha, J.: Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186, 17–22 (1989)CrossRefGoogle Scholar
  31. 31.
    Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)CrossRefGoogle Scholar
  32. 32.
    Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J., Bron, C.: Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappa B activation. Immunity 18, 655–664 (2003)CrossRefGoogle Scholar
  33. 33.
    Hueber, A.O., Bernard, A.M., Herincs, Z., Couzinet, A., He, H.T.: An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196 (2002)CrossRefGoogle Scholar
  34. 34.
    Allen, D.L., Linderman, J.K., Roy, R.R., Bigbee, A.J., Grindeland, R.E., Mukku, V., Edgerton, V.R.: Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am. J. Physiol. 273, C579–C587 (1997)Google Scholar
  35. 35.
    Gniadecki, R.: Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem. Biophys. Res. Commun. 320, 165–169 (2004)CrossRefGoogle Scholar
  36. 36.
    Onodera, R., Motoyama, K., Okamatsu, A., Higashi, T., Kariya, R., Okada, S., Arima, H.: Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin. Int. J. Pharm. 452, 116–123 (2013)CrossRefGoogle Scholar
  37. 37.
    Motoyama, K., Kameyama, K., Onodera, R., Araki, N., Hirayama, F., Uekama, K., Arima, H.: Involvement of PI3K-Akt-Bad pathway in apoptosis induced by 2,6-di-O-methyl-beta- cyclodextrin, not 2,6-di-O-methyl-alpha-cyclodextrin, through cholesterol depletion from lipid rafts on plasma membranes in cells. Eur. J. Pharm. Sci. 38, 249–261 (2009)CrossRefGoogle Scholar
  38. 38.
    Grosse, P.Y., Bressolle, F., Pinguet, F.: Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice. Br. J. Cancer 78, 1165–1169 (1998)CrossRefGoogle Scholar
  39. 39.
    Onodera, R., Motoyama, K., Arima, H.: Design and evaluation of folate-appended methyl-beta-cyclodextrin as a new antitumor agent. J. Incl. Phenom. Macrocycl. Chem. 70, 321–326 (2013)CrossRefGoogle Scholar
  40. 40.
    Onodera, R., Motoyama, K., Okamatsu, A., Higashi, T., Arima, H.: Potential use of folate-appended methyl-β-cyclodextrin as an anticancer agent. Sci. Rep. 3, 1104 (2013)CrossRefGoogle Scholar
  41. 41.
    Maxfield, F.R., Tabas, I.: Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005)CrossRefGoogle Scholar
  42. 42.
    Li, H.Y., Appelbaum, F.R., Willman, C.L., Zager, R.A., Banker, D.E.: Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 101, 3628–3634 (2003)CrossRefGoogle Scholar
  43. 43.
    Ghalaut, V.S., Pahwa, M.B., Sunita Ghalaut, P.S.: Alteration in lipid profile in patients of chronic myeloid leukemia before and after chemotherapy. Clin. Chim. Acta 366, 239–242 (2006)CrossRefGoogle Scholar
  44. 44.
    Mulas, M.F., Abete, C., Pulisci, D., Pani, A., Massidda, B., Dessì, S., Mandas, A.: Cholesterol esters as growth regulators of lymphocytic leukaemia cells. Cell Prolif. 44, 360–371 (2011)CrossRefGoogle Scholar
  45. 45.
    Yokoo, M., Kubota, Y., Motoyama, K., Higashi, T., Taniyoshi, M., Tokumaru, H., Nishiyama, R., Tabe, Y., Mochinaga, S., Sato, A., Sueoka-Aragane, N., Sueoka, E., Arima, H., Irie, T., Kimura, S.: 2-Hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. PLoS ONE. 10, e0141946 (2015)CrossRefGoogle Scholar
  46. 46.
    Frömming, K.H., Szejtli, J.: Pharmacokinetics and toxicology of cyclodextrins. In: Frömming, K.H., Szejtli, J. (eds.) Cyclodextrins in Pharmacy, pp. 33–45. Springer, Budapest (1996)Google Scholar
  47. 47.
    Ramaswami, R., Harding, V., Newsom-Davis, T.: Novel cancer therapies: treatments driven by tumour biology. Postgrad. Med. J. 89, 652–658 (2013)CrossRefGoogle Scholar
  48. 48.
    Kipp, J.E.: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122 (2004)CrossRefGoogle Scholar
  49. 49.
    Gupta, S.C., Sung, B., Prasad, S., Webb, L.J., Aggarwal, B.B.: Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. 34, 508–517 (2013)CrossRefGoogle Scholar
  50. 50.
    Narvekar, M., Xue, H.Y., Eoh, J.Y., Wong, H.L.: Nanocarrier for poorly water-soluble anticancer drugs–barriers of translation and solutions. AAPS PharmSciTech. 15, 822–833 (2014)CrossRefGoogle Scholar
  51. 51.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62, 1607–1621 (2010)CrossRefGoogle Scholar
  52. 52.
    Ku, M.S.: Use of the biopharmaceutical classification system in early drug development. AAPS J. 10, 208–212 (2008)CrossRefGoogle Scholar
  53. 53.
    Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47–60 (2000)CrossRefGoogle Scholar
  54. 54.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  55. 55.
    Otero-Espinar, F.J., Torres-Labandeira, J.J., Alvarez-Lorenzo, C., Blanco-Méndez, J.: Cyclodextrins in drug delivery systems. J. Drug Deliv. Sci. Technol. 20, 289–301 (2010)CrossRefGoogle Scholar
  56. 56.
    Olesen, N.E., Westh, P., Holm, R.: Displacement of drugs from cyclodextrin complexes by bile salts: a suggestion of an intestinal drug-solubilizing capacity from an in vitro model. J. Pharm. Sci. 105, 2640–2647 (2016)CrossRefGoogle Scholar
  57. 57.
    Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed. Res. Int. 2015, 1–15 (2015)CrossRefGoogle Scholar
  58. 58.
    Chen, Y., Zhou, Y.L., Ren, Y., Yan, W.Q.: Inclusion complex of paclitaxel in hydroxypropyl-β- cyclodextrin. Chem. Res. Chin. Univ. 21, 749–752 (2005)Google Scholar
  59. 59.
    Bouquet, W., Ceelen, W., Fritzinger, B., Pattyn, P., Peeters, M., Remon, J.P., Vervaet, C.: Paclitaxel/β-cyclodextrin complexes for hyperthermic peritoneal perfusion-formulation and stability. Eur. J. Pharm. Biopharm. 66, 391–397 (2007)CrossRefGoogle Scholar
  60. 60.
    Liu, Y., Chen, G.S., Li, L., Zhang, H.Y., Cao, D.X., Yuan, Y.J.: Inclusion complexation and solubilization of paclitaxel by bridged bis(beta-cyclodextrin)s containing a tetraethylene pentaamino spacer. J. Med. Chem. 46, 4634–4637 (2003)CrossRefGoogle Scholar
  61. 61.
    Singh, U.V., Aithal, K.S., Udupa, N.: Physicochemical and biological studies of inclusion complex of methotrexate with β-cyclodextrin. Pharm. Sci. 3, 573–577 (1997)Google Scholar
  62. 62.
    Kang, J., Kumar, V., Yang, D., Chowdhury, P.R., Hohl, R.J.: Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of CPT, an antineoplastic agent. Eur. J. Pharm. Sci. 15, 163–170 (2002)CrossRefGoogle Scholar
  63. 63.
    Saetern, A.M., Nguyen, N.B., Bauer-Brandl, A., Brandl, M.: Effect of hydroxypropyl-beta- cyclodextrin-complexation and pH on solubility of CPT. Int. J. Pharm. 284, 61–68 (2004)CrossRefGoogle Scholar
  64. 64.
    Peng, M.L., Liu, Y.H., Zhang, H., Cui, Y.L., Zhai, G.H., Chen, C.: Photostability study of doxorubicin aqueous solution enhanced by inclusion interaction between doxorubicin and hydroxypropyl- β-cyclodextrin. Chin. J. Chem. 28, 1291–1295 (2010)CrossRefGoogle Scholar
  65. 65.
    Balajia, A., Pandeyb, V.P., Srinathc, M.S., Manavalan, R.: Synthesis and characterization studies of cisplatin/hydroxypropyl-β-cyclodextrin complex. Pharmacologyonline 1, 1135–1143 (2009)Google Scholar
  66. 66.
    Di Donato, C., Lavorgna, M., Fattorusso, R., Isernia, C., Isidori, M., Malgieri, G., Piscitelli, C., Russo, C., Russo, L., Iacovino, R.: Alpha- and beta-cyclodextrin inclusion complexes with 5-fluorouracil: characterization and cytotoxic activity evaluation. Molecules 21, 1–14 (2016)CrossRefGoogle Scholar
  67. 67.
    Tóth, G., Jánoska, Á., Völgyi, G., Szabó, Z.I., Orgován, G., Mirzahosseini, A., Noszál, B.: Physicochemical characterization and cyclodextrin complexation of the anticancer drug lapatinib. J. Chem. (2017). Google Scholar
  68. 68.
    Jantarat, C., Sirathanarun, P., Ratanapongsai, S., Watcharakan, P., Sunyapong, S., Wadu, A.: Curcumin-hydroxypropyl-β-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and pH shift on solubility and stability of curcumin. Trop. J. Pharm. Res. 13, 1215–1223 (2014)CrossRefGoogle Scholar
  69. 69.
    Wu, J.Y., Zhao, D.Z., Wan, K., Li, Y., Zhang, J.Q.: Hydroxypropyl beta cyclodextrin inclusion increased the inhibition effects of curcumin on A549 cell proliferation and induces the cell apoptosis in vitro. Basic Clin. Res. 33, 1605–1610 (2013)Google Scholar
  70. 70.
    Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 153, 361–370 (2014)CrossRefGoogle Scholar
  71. 71.
    Qiu, N., Cheng, X., Wang, G., Wang, W., Wen, J., Zhang, Y., Song, H., Ma, L., Wei, Y., Peng, A., Chen, L.: Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin: preparation and in vitro evaluation. Carbohydr. Polym. 101, 623–630 (2014)CrossRefGoogle Scholar
  72. 72.
    Uekama, K.: Pharmaceutical applications of methylated cyclodextrins. Pharm. Int. 6, 61–65 (1985)Google Scholar
  73. 73.
    Pourgholami, M.H., Wangoo, K.T., Morris, D.L.: Albendazole-cyclodextrin complex: enhanced cytotoxicity in ovarian cancer cells. Anticancer Res. 28, 2775–2779 (2008)Google Scholar
  74. 74.
    Jiang, Y., Jiang, X., Law, K., Chen, Y., Gu, J., Zhang, W., Xin, H., Sha, X., Fang, X.: Enhanced anti-tumor effect of 9-nitro-CPT complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int. J. Pharm. 415, 252–258 (2011)CrossRefGoogle Scholar
  75. 75.
    Zylberberg, C., Matosevic, S.: Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 23, 3319–3329 (2016)CrossRefGoogle Scholar
  76. 76.
    Fathi, S., Oyelere, A.K.: Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future. Med. Chem. 8, 2091–2112 (2016)Google Scholar
  77. 77.
    Gharib, R., Greige-Gerges, H., Fourmentin, S., Charcosset, C., Auezova, L.: Liposomes incorporating cyclodextrin-drug inclusion complexes: current state of knowledge. Carbohydr. Polym. 129, 175–186 (2015)CrossRefGoogle Scholar
  78. 78.
    Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Betamethasone-in- cyclodextrin-in-liposome: the effect of cyclodextrins on encapsulation efficiency and release kinetics. Int. J. Pharm. 312, 75–82 (2006)CrossRefGoogle Scholar
  79. 79.
    McCormack, B., Gregoriadis, G.: Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J. Drug Target. 2, 449–454 (1994)CrossRefGoogle Scholar
  80. 80.
    Evrard, B., Chiap, P., DeTullio, P., Ghalmi, F., Piel, G., Van Hees, T., Crommen, J., Losson, B., Delattre, L.: Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-beta-cyclodextrin. J. Controll. Release 85, 45–50 (2002)CrossRefGoogle Scholar
  81. 81.
    Qiu, N., Cai, L.L., Wang, W.W., Wang, G.C., Xu, Q.Y., Wen, J.L., Liu, J.D., Wei, Y.Q., Chen, L.J.: Barbigerone-in-hydroxypropyl-b-cyclodextrin-liposomal nanoparticle: preparation, characterization and anti-cancer activities. J. Incl. Phenom. Macrocycl. Chem. 82, 505–514 (2015)CrossRefGoogle Scholar
  82. 82.
    Piette, M., Castagne, D., Delattre, L., Piel, G.: Preparation and evaluation of liposomes encapsulating synthetic MMP inhibitor (Ro 28-2653)-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 57, 101–103 (2007)CrossRefGoogle Scholar
  83. 83.
    Dhule, S.S., Penfornis, P., Frazier, T., Walker, R., Feldman, J., Tan, G., He, J., Alb, A., John, V., Pochampally, R.: Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine. 8, 440–451 (2012)CrossRefGoogle Scholar
  84. 84.
    Hagiwara, Y., Arima, H., Hirayama, F., Uekama, K.: Prolonged retention of doxorubicin in tumor cells by encapsulation of γ-cyclodextrin complex in pegylated liposomes. J. Incl. Phenom. Macrocycl. Chem. 56, 65–68 (2006)CrossRefGoogle Scholar
  85. 85.
    Arima, H., Hagiwara, Y., Hirayama, F., Uekama, K.: Enhancement of antitumor effect of doxorubicin by its complexation with gamma-cyclodextrin in pegylated liposomes. J. Drug Target. 14, 225–232 (2006)CrossRefGoogle Scholar
  86. 86.
    Cui, J., Li, C., Wang, C., Li, Y., Zhang, L., Zhang, L., Xiu, X., Li, Y., Wei, N.: Development of pegylated liposomal vincristine using novel sulfobutyl ether cyclodextrin gradient: is improved drug retention sufficient to surpass DSPE-PEG-induced drug leakage? J. Pharm. Sci. 100, 2835–2848 (2011)CrossRefGoogle Scholar
  87. 87.
    Mendonça, E.A., Lira, M.C., Rabello, M.M., Cavalcanti, I.M., Galdino, S.L., Pitta, I.R., Lima Mdo, C., Pitta, M.G., Hernandes, M.Z., Santos-Magalhães, N.S.: Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech. 13, 1355–1366 (2012)CrossRefGoogle Scholar
  88. 88.
    Hovgaard, L., Brøndsted, H.: Current applications of polysaccharides in colon targeting. Crit. Rev. Ther. Drug Carr. Syst. 13, 185–223 (1996)CrossRefGoogle Scholar
  89. 89.
    Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)CrossRefGoogle Scholar
  90. 90.
    Udo, K., Hokonohara, K., Motoyama, K., Arima, H., Hirayama, F., Uekama, K.: 5-Fluorouracil acetic acid/beta-cyclodextrin conjugates: drug release behavior in enzymatic and rat cecal media. Int. J. Pharm. 388, 95–100 (2010)CrossRefGoogle Scholar
  91. 91.
    Yang, B., Zhao, Y.L., Yang, X., Liao, X.L., Yang, J., Zhang, J.H., Gao, C.Z.: Scutellarin-cyclodextrin conjugates: synthesis, characterization and anticancer activity. Carbohydr. Polym. 92(2), 1308–1314 (2013)CrossRefGoogle Scholar
  92. 92.
    Jiang, R.J., Zhao, Y.L., Chen, Y.J., Xiao, D., Wang, F., Han, B., Yang, J., Liao, X.L., Yang, L.J., Gao, C.Z., Yang, B.: Synthesis, characterization, and in vitro evaluation of artesunate-β-cyclodextrin conjugates as novel anti-cancer prodrugs. Carbohydr. Res. 400, 19–25 (2014)CrossRefGoogle Scholar
  93. 93.
    Liu, M.S., Lv, P., Liao, R.Q., Zhao, Y.L., Yang, B.: Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate. J. Mol. Struct. 1128, 239–244 (2017)CrossRefGoogle Scholar
  94. 94.
    Liu, Y., Zhang, N., Chen, Y., Wang, L.H.: Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-beta-cyclodextrin to Zn2+. Org. Lett. 9, 315–318 (2007)CrossRefGoogle Scholar
  95. 95.
    Zhang, N., Chen, Y., Yu, M., Liu, Y.: Benzenesulfonamidoquinolino-beta-cyclodextrin as a cell-impermeable fluorescent sensor for Zn2+. Chem. Asian J. 4, 1697–1702 (2009)CrossRefGoogle Scholar
  96. 96.
    Leamon, C.P., Low, P.S.: Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today 6, 44–51 (2001)CrossRefGoogle Scholar
  97. 97.
    Mizusako, H., Tagami, T., Hattori, K., Ozeki, T.: Active drug targeting of a folate-based cyclodextrin-doxorubicin conjugate and the cytotoxic effect on drug-resistant mammary tumor cells in vitro. J. Pharm. Sci. 104, 2934–2940 (2015)CrossRefGoogle Scholar
  98. 98.
    Veronese, F.M., Pasut, G.: PEGylation, successful approach to drug delivery. Drug Discov. Today. 10, 1451–1458 (2005)CrossRefGoogle Scholar
  99. 99.
    Cheng, J., Khin, K.T., Davis, M.E.: Antitumor activity of beta-cyclodextrin polymer-CPT conjugates. Mol. Pharm. 1, 183–193 (2004)CrossRefGoogle Scholar
  100. 100.
    Heidel, J.D., Schluep, T.: Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J. Drug Deliv. 2012, 262731 (2012)CrossRefGoogle Scholar
  101. 101.
    Cheng, J., Khin, K.T., Jensen, G.S., Liu, A., Davis, M.E.: Synthesis of linear, beta-cyclodextrin-based polymers and their CPT conjugates. Bioconjug. Chem. 14, 1007–1017 (2003)CrossRefGoogle Scholar
  102. 102.
    Schluep, T., Cheng, J., Khin, K.T., Davis, M.E.: Pharmacokinetics and biodistribution of the CPT-polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother. Pharmacol. 57, 654–662 (2006)CrossRefGoogle Scholar
  103. 103.
    Young, C., Schluep, T., Hwang, J., Eliasof, S.: CRLX101 (formerly IT-101)-a novel nanopharmaceutical of CPT in clinical development. Curr. Bioact. Compd. 7, 8–14 (2011)CrossRefGoogle Scholar
  104. 104.
    Schluep, T., Hwang, J., Cheng, J., Heidel, J.D., Bartlett, D.W., Hollister, B., Davis, M.E.: Preclinical efficacy of the CPT-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12, 1606–1614 (2006)CrossRefGoogle Scholar
  105. 105.
    Numbenjapon, T., Wang, J., Colcher, D., Schluep, T., Davis, M.E., Duringer, J., Kretzner, L., Yen, Y., Forman, S.J., Raubitschek, A.: Preclinical results of CPT-polymer conjugate (IT-101) in multiple human lymphoma xenograft models. Clin. Cancer Res. 15, 4365–4373 (2009)CrossRefGoogle Scholar
  106. 106.
    Schluep, T., Gunawan, P., Ma, L., Jensen, G.S., Duringer, J., Hinton, S., Richter, W., Hwang, J.: Polymeric tubulysin-peptide nanoparticles with potent antitumor activity. Clin. Cancer Res. 15, 181–189 (2009)CrossRefGoogle Scholar
  107. 107.
    Weiss, G.J., Chao, J., Neidhart, J.D., Ramanathan, R.K., Bassett, D., Neidhart, J.A., Choi, C.H., Chow, W., Chung, V., Forman, S.J., Garmey, E., Hwang, J., Kalinoski, D.L., Koczywas, M., Longmate, J., Melton, R.J., Morgan, R., Oliver, J., Peterkin, J.J., Ryan, J.L., Schluep, T., Synold, T.W., Twardowski, P., Davis, M.E., Yen, Y.: First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-CPT nanopharmaceutical in patients with advanced solid tumor malignancies. Investig. New Drugs 31, 986–1000 (2013)CrossRefGoogle Scholar
  108. 108.
    Lakkakula, J.R., Krause, R.W.M.: A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9, 877–894 (2014)CrossRefGoogle Scholar
  109. 109.
    Bilensoy, E., Hincal, A.A.: Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin. Drug Deliv. 6, 1161–1173 (2009)CrossRefGoogle Scholar
  110. 110.
    Varan, G., Varan, C., Erdoğar, N., Hıncal, A.A., Bilensoy, E.: Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm. (2017). Google Scholar
  111. 111.
    Bilensoy, E., Gürkaynak, O., Ertan, M., Sen, M., Hincal, A.A.: Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci. 97, 1519–1529 (2008)CrossRefGoogle Scholar
  112. 112.
    Agüeros, M., Ruiz-Gatón, L., Vauthier, C., Bouchemal, K., Espuelas, S., Ponchel, G., Irache, J.M.: Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci. 38, 405–413 (2009)CrossRefGoogle Scholar
  113. 113.
    Cirpanli, Y., Bilensoy, E., Doğan, A.L., Caliş, S.: Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective CPT delivery. Eur. J. Pharm. Biopharm. 73, 82–89 (2009)CrossRefGoogle Scholar
  114. 114.
    Quaglia, F., Ostacolo, L., Mazzaglia, A., Villari, V., Zaccaria, D., Sciortino, M.T.: The intracellular effects of non-ionic amphiphilic cyclodextrin nanoparticles in the delivery of anticancer drugs. Biomaterials 30, 374–382 (2009)CrossRefGoogle Scholar
  115. 115.
    Mazzaferro, S., Bouchemal, K., Skanji, R., Gueutin, C., Chacun, H., Ponchel, G.: Intestinal permeation enhancement of docetaxel encapsulated into methyl-β-cyclodextrin/poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J. Controll. Release 162, 568–574 (2012)CrossRefGoogle Scholar
  116. 116.
    Wang, J., Zong, J.Y., Zhao, D., Zhuo, R.X., Cheng, S.X.: In situ formation of chitosan-cyclodextrin nanospheres for drug delivery. Colloids Surf. B 87, 198–202 (2011)CrossRefGoogle Scholar
  117. 117.
    Anand, R., Manoli, F., Manet, I., Daoud-Mahammed, S., Agostoni, V., Gref, R., Monti, S.: β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochem. Photobiol. Sci. 11, 1285–1292 (2012)CrossRefGoogle Scholar
  118. 118.
    Chaturvedi, K., Ganguly, K., Kulkarni, A.R., Kulkarni, V.H., Nadagouda, M.N., Rudzinski, W.E., Aminabhavi, T.M.: Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin. Drug Deliv. 8, 1455–1468 (2011)CrossRefGoogle Scholar
  119. 119.
    Tokatlian, T., Segura, T.: siRNA applications in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 305–315 (2010)CrossRefGoogle Scholar
  120. 120.
    Mishra, S., Heidel, J.D., Webster, P., Davis, M.E.: Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Controll. Release 116, 179–191 (2006)CrossRefGoogle Scholar
  121. 121.
    Kim, C., Shah, B.P., Subramaniam, P., Lee, K.B.: Synergistic induction of apoptosis in brain cancer cells by targeted codelivery of siRNA and anticancer drugs. Mol. Pharm. 8, 1955–1961 (2011)CrossRefGoogle Scholar
  122. 122.
    Guo, J., Ogier, J.R., Desgranges, S., Darcy, R., O’Driscoll, C.: Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 33, 7775–7784 (2012)CrossRefGoogle Scholar
  123. 123.
    Guo, J., Russell, E.G., Darcy, R., Cotter, T.G., McKenna, S.L., Cahill, M.R., O’Driscoll, C.M.: Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol. Pharm. 14, 940–952 (2017)CrossRefGoogle Scholar
  124. 124.
    Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E., Triche, T.J.: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992 (2005)CrossRefGoogle Scholar
  125. 125.
    Heidel, J.D., Liu, J.Y., Yen, Y., Zhou, B., Heale, B.S., Rossi, J.J., Bartlett, D.W., Davis, M.E.: Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res. 13, 2207–2215 (2007)CrossRefGoogle Scholar
  126. 126.
    Heidel, J.D., Yu, Z., Liu, J.Y., Rele, S.M., Liang, Y., Zeidan, R.K., Kornbrust, D.J., Davis, M.E.: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA 104, 5715–5721 (2007)CrossRefGoogle Scholar
  127. 127.
    Heidel, J.D.: “Preclinical development of targeted nanoparticles for systemic delivery of siRNA,” in Proceedings of the 3rd Annual Meeting of the Oligonucleotide Therapeutics Society. Berlin, Germany (2007)Google Scholar
  128. 128.
    Davis, M.E., Zuckerman, J.E., Choi, C.H., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., Ribas, A.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)CrossRefGoogle Scholar
  129. 129.
    Ribas, A., Kalinoski, L., Heidel, J.D., Peterkin, J., Seligson, D.B., Zuckerman, J.E., Choi, C., Yen, Y., Davis, M.E., Tolcher, A.W.: Systemic delivery of siRNA via targeted nanoparticles in patients with cancer: results from a first-in-class phase I clinical trial. J. Clin. Oncol. 28, 3022–3022 (2010)CrossRefGoogle Scholar
  130. 130.
    Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013)CrossRefGoogle Scholar
  131. 131.
    Erdogar, N., Varan, G., Bilensoy, E.: Amphiphilic cyclodextrin derivatives for targeted drug delivery to tumors. Curr. Top. Med. Chem. 17, 1521–1528 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical EngineeringChengdu University of TechnologyChengduPeople’s Republic of China
  2. 2.Department of Oral and Maxillofacial Surgery, West China School of StomatologySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations