Water structuring inside the cavities of cucurbit[n]urils (n = 5–8): a quantum-chemical forecast

  • Tatiana N. Grishaeva
  • Alexey N. Masliy
  • Andrey M. Kuznetsov
Original Article
  • 117 Downloads

Abstract

In this work we report findings of the quantum-chemical examination of water structuring in the cavities of cucurbit[n]urils (CB[n]), n = 5–8 obtained within the density functional theory. The thermodynamically most stable structures of inclusion compounds (H2O)m@CB[n] were determined for different numbers m of H2O molecules inside the cavities. From the viewpoint of thermodynamics, the most probable numbers m of water molecules in the CB[n] homologues are the following: m = 2 for CB[5], m = 4 for CB[6], m = 8 for CB[7] and m = 10 for CB[8]. For the case of CB[6] synthesized in aqueous solution, we compared its experimental IR spectrum with that calculated quantum-chemically for the model inclusion systems (H2O)m@CB[6] where m ranges from 1 to 6. The best agreement between the experimental and theoretical spectra was observed for (H2O)4@CB[6], in complete agreement with the conclusion made based on the thermodynamic estimations. Our results are also in good agreement with other available estimates of the most probable number of water molecules in CB[n].

Keywords

DFT Cucurbit[n]urils Inclusion compounds Water structuring IR spectra 

Notes

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation (the basic part of the state task No. 4.5382.2017/8.9). The authors also thank L.A. Sheludyakova and E.A. Kovalenko (Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation) for kindly providing IR spectra of CB[6].

Supplementary material

10847_2017_751_MOESM1_ESM.doc (562 kb)
Supplementary material 1 (DOC 562 KB)

References

  1. 1.
    Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)CrossRefGoogle Scholar
  2. 2.
    Gerasko, O.A., Samsonenko, D.G., Fedin, V.P.: Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev. 71, 741–760 (2002)CrossRefGoogle Scholar
  3. 3.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)CrossRefGoogle Scholar
  4. 4.
    Lagona, J., Fettinger, J.C., Isaacs, L.: Cucurbit[n]uril analogues. J. Org. Lett. 5, 3745–3747 (2003)CrossRefGoogle Scholar
  5. 5.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)CrossRefGoogle Scholar
  6. 6.
    Ni, X.-L., Xiao, X., Cong, H., Liang, L.-L., Cheng, K., Cheng, X.-J., Ji, N.-N., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013)CrossRefGoogle Scholar
  7. 7.
    Kim, S.-Y., Jung, I.-S., Lee, E., Kim, J., Sakamoto, S., Yanaguchi, K., Kim, K.: Macrocycles within macrocycles: cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem. Int. Ed. 40, 2119–2121 (2001)CrossRefGoogle Scholar
  8. 8.
    Mitkina, T.V., Sokolov, M.N., Naumov, D.Y., Kuratieva, N.V., Gerasko, O.A., Fedin, V.P.: Jørgensen complex within a molecular container: selective encapsulation of trans-[Co(en)2Cl2]+ into cucurbit[8]uril and influence of inclusion on guest’s properties. Inorg. Chem. 45, 6950–6955 (2006)CrossRefGoogle Scholar
  9. 9.
    Mitkina, T.V., Zakharchuk, N.F., Naumov, D.Y., Gerasko, O.A., Fenske, D., Fedin, V.P.: Syntheses, structures, and electrochemical properties of inclusion compounds of cucurbit[8]uril with cobalt(III) and nickel(II) complexes. Inorg. Chem. 47, 6748–6755 (2008)CrossRefGoogle Scholar
  10. 10.
    Bali, M.S., Buck, D.P., Coe, A.J., Day, A.I., Collins, J.G.: Cucurbituril binding of trans-[{PtCl(NH3)2}2(μ-NH2(CH2)8NH2)]2+ and the effect on the reaction with cysteine. J. Chem. Soc. Dalton Trans. 45, 5337–5344 (2006)CrossRefGoogle Scholar
  11. 11.
    Wheate, N.J., Day, A.I., Blanch, R.J., Arnold, A.P., Cullinane, C., Collins, J.G.: Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxity in cancer treatment. Chem. Commun. 12, 1424–1425 (2004)CrossRefGoogle Scholar
  12. 12.
    Wheate, N.J., Buck, D.P., Day, A.I., Collins, J.G.: Cucurbit[n]uril binding of platinum anticancer complexes. Chem. Soc. Dalton Trans. 3, 451–458 (2006)CrossRefGoogle Scholar
  13. 13.
    Kim, K., Jeon, Y.J., Kim, S.-Y., Ko, Y.H., Postech Foundation, S. Korea, PCT Int. Appl. 42 (2002)Google Scholar
  14. 14.
    Wheate, N.J., Day, A.I., Blanch, R.J., Collins, J.G.: UNISEARCH Limited, Australia, PCT Int. Appl. 63 (2005)Google Scholar
  15. 15.
    Pichierri, F.: Density functional study of cucurbituril and its sulfur analogue. Chem. Phys. Lett. 390, 214–219 (2004)CrossRefGoogle Scholar
  16. 16.
    Pichierri, F.: DFT study of cucurbit[n]uril, n = 5–10. THEOCHEM. 765, 151–152 (2006)CrossRefGoogle Scholar
  17. 17.
    Wagner, B.D., Stojanovic, N., Day, A.I., Blanch, R.J.: Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J. Phys. Chem. B. 107, 10741–10746 (2003)CrossRefGoogle Scholar
  18. 18.
    Gadde, S., Batchelor, E.K., Weiss, J.P., Ling, Y., Kaifer, A.E.: Control of H- and J-aggregate formation via host–guest complexation using cucurbituril hosts. J. Am. Chem. Soc. 130, 17114–17119 (2008)CrossRefGoogle Scholar
  19. 19.
    Suvitha, A., Venkataramanan, N.S., Mizuseki, H., Kawazoe, Y., Ohuchi, N.: Theoretical insights into the formation, structure, and electronic properties of anticancer oxaplatin drug and cucurbit[n]urils n = 5 to 8. J. Incl. Phenom. Macrocycl. Chem. 66, 213–218 (2009)CrossRefGoogle Scholar
  20. 20.
    Oh, K.S., Yoon, J., Kim, K.S.: Structural stabilities and self-assembly of cucurbit[n]uril (n = 4–7) and decametylcucurbituril (n = 4–6): theoretical study. J. Phys. Chem. B. 105, 9726–9731 (2001)CrossRefGoogle Scholar
  21. 21.
    Chakhaborty, A., Wu, A., Witt, D., Lagona, J., Fettinger, J.C., Isaacs, L.: Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J. Am. Chem. Soc. 124, 8297–8306 (2002)CrossRefGoogle Scholar
  22. 22.
    Buschmann, H.-J., Wego, A., Zielesny, A., Schollmeyer, E.: Structure, electronic properties and NMR-shielding of cucurbit[n]urils. J. Incl. Phenom. Macrocycl. 54, 85–88 (2006)CrossRefGoogle Scholar
  23. 23.
    Gobre, V.V., Pinjari, R.V., Gejji, S.P.: Density functional studies of charge distribution, vibrational spectra and NMR chemical shifts in cucurbit[n]uril (n = 5–12) hosts. J. Phys. Chem. A. 144, 4464–4470 (2010)CrossRefGoogle Scholar
  24. 24.
    Mu, T.W., Liu, L., Zhang, K.C., Guo, Q.X.: A theoretical study on the stereoisomerism in the complex of cucurbit[8]uril with 2,6-bis(4,5-1H-imidazol-2-yl)naphthalene. Chin. Chem. Let. 12, 783–786 (2001)Google Scholar
  25. 25.
    Pinjara, R.V., Gejji, S.P.: Electronic structure, molecular electrostatic potential, and NMR chemical shifts in cucurbit[n]urils (n = 5–8), ferrocene, and their complexes. J. Phys. Chem. B. 112, 12679–12686 (2008)CrossRefGoogle Scholar
  26. 26.
    Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I., Al-Gharabli, S.I.: Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and β-cyclodextrin: a computational study. J. Incl. Phenom. Macrocycl. Chem. 64, 357–365 (2009)CrossRefGoogle Scholar
  27. 27.
    Márquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)CrossRefGoogle Scholar
  28. 28.
    Pinjari, R.V., Gejji, S.P.: On the binding of SF6 to cucurbit[6]uril host: density functional study. J. Phys. Chem. A. 114, 2338–2343 (2010)CrossRefGoogle Scholar
  29. 29.
    Ivanov, D.A., Petrov, N.K., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.I., Gromov, S.P., Alfimov, M.V.: The 1:1 Host–guest complexation between cucurbit[7]uril and styryl dye. J. Phys. Chem. A. 115, 4505–4510 (2011)CrossRefGoogle Scholar
  30. 30.
    Megyesi, M., Biszók, L., Jablonkai, I.: Highly sensitive fluorescence response to inclusion complex formation of berberine alkoid with cucurbit[7]uril. J. Phys. Chem. C. 112, 3410–3416 (2008)CrossRefGoogle Scholar
  31. 31.
    Miskolczy, Z., Biczók, L., Megyesi, M., Jablonkai, I.: Inclusion complex formation of ionic liquids and other cationic organic compounds with cucurbit[7]uril studied by 4′,6-diamidini-2-phenylindole fluorescent probe. J. Phys. Chem. B. 113, 1645–1651 (2009)CrossRefGoogle Scholar
  32. 32.
    Pattabiraman, M., Natarajan, A., Kaanumalle, L.S., Ramamurthy, V.: Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril and γ-cyclodextrin. Org. Lett. 7, 529–532 (2005)CrossRefGoogle Scholar
  33. 33.
    Pattabiraman, M., Kaanumalle, L.S., Natarajan, A., Ramamurthy, V.: Regioselective photodimerization of cinnamic acids in water: templation with cucurbiturils. Langmuir. 22, 7605–7609 (2006)CrossRefGoogle Scholar
  34. 34.
    Choudhury, S.D., Mohanty, J., Uadhyaya, H.P., Bhasikuttan, A.C., Pal, H.: Photophysical studies on the noncovalent interaction of thioflavin T with cucurbit[n]uril macrocycles. J. Phys. Chem. B. 113, 1891–1898 (2009)CrossRefGoogle Scholar
  35. 35.
    Isobe, H., Sato, S., Nakamura, E.: Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. J. Org. Lett. 4, 1287–1289 (2002)CrossRefGoogle Scholar
  36. 36.
    Pichieri, F.: Nanosoldering of thia-cucurbituril macrocycles with transition metals affords novel tubular nanostructures: a computational study. Chem. Phys. Lett. 403, 252–256 (2004)CrossRefGoogle Scholar
  37. 37.
    Mock, W.L., Shih, N.Y.: Host-guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)CrossRefGoogle Scholar
  38. 38.
    Mock, W.L., Shih, N.-Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986)CrossRefGoogle Scholar
  39. 39.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–542 (2000)CrossRefGoogle Scholar
  40. 40.
    Jeon, Y.-M., Kim, J., Wang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)CrossRefGoogle Scholar
  41. 41.
    Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volumes of their cavity determine the hydrophobic driving force for host-guest complexation. Isr. J. Chem. 51, 559–577 (2011)CrossRefGoogle Scholar
  42. 42.
    Laikov, D.N.: Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 281, 151–156 (1997)CrossRefGoogle Scholar
  43. 43.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  44. 44.
    Laikov, D.N.: A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 416, 116–120 (2005)CrossRefGoogle Scholar
  45. 45.
    ChemCraft, Tool for treatment of chemical data. http://www.chemcraftprog.com. Accessed 1 July 2011
  46. 46.
    Maheshwary, S., Patel, N., Sathyamurthy, N.: Structure and stability of water clusters (H2O)n n = 8–20: an ab initio investigation. J. Phys. Chem. A. 105, 10525–10537 (2001)CrossRefGoogle Scholar
  47. 47.
    Lee, H.M., Suh, S.B., Lee, J.Y., Tarakeshwar, P., Kim, K.S.: Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112, 9759–9772 (2000)CrossRefGoogle Scholar
  48. 48.
    Ludwig, R.: Water: from cluster to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001)CrossRefGoogle Scholar
  49. 49.
    Masliy, A.N., Grishaeva, T.N., Kuznetsov, A.M., Bakovets, V.V.: Quantum-chemical study of structurization of water in the cavity of cucurbit[6]uryl. J. Struct. Chem. 50, 391–396 (2009)CrossRefGoogle Scholar
  50. 50.
    Tsai, C.J., Jordan, K.D.: Theoretical study of the (H2O)6 cluster. Chem. Phys. Lett. 213, 181–188 (1993)CrossRefGoogle Scholar
  51. 51.
    Laasonen, K., Parrinello, M., Car, R., Lee, C., Vanderbilt, D.: Structures of small water clusters using gradient-corrected density functional theory. Chem. Phys. Lett. 207, 208–213 (1993)CrossRefGoogle Scholar
  52. 52.
    Kim, K., Jordan, K.D., Zwier, T.S.: Low-energy structures and vibrational frequencies of the water hexamer: comparison with benzene-(H2O)6. J. Am. Chem. Soc. 116, 11568–11569 (1994)CrossRefGoogle Scholar
  53. 53.
    Lee, C., Chen, H., Fitzgerald, G.: Chemical bonding in water clusters. J. Chem. Phys. 102, 1266–1269 (1995)CrossRefGoogle Scholar
  54. 54.
    Estrin, D.A., Paglieri, L., Corongiu, G., Clementi, E.: Small clusters of water molecules using density functional theory. J. Chem. Phys. 100, 8701–8711 (1996)CrossRefGoogle Scholar
  55. 55.
    Liu, K., Brown, M.G., Carter, C., Saykally, R.J., Gregory, J.K., Clary, D.C.: Characterization of a cage form of the water hexamer. NATURE. 381, 501–503 (1996)CrossRefGoogle Scholar
  56. 56.
    Kim, J., Kim, K.S.: Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies. J. Chem. Phys. 109, 5886–5895 (1998)CrossRefGoogle Scholar
  57. 57.
    Kryachko, E.S.: Ab initio studies of the conformations of water hexamer: modelling the penta-coordinated hydrogen-bonded pattern in liquid water. Chem. Phys. Lett. 314, 353–363 (1999)CrossRefGoogle Scholar
  58. 58.
    Xantheas, S.S., Burnham, C.J., Harrison, R.J.: Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116, 1493–1499 (2002)CrossRefGoogle Scholar
  59. 59.
    Su, J.T., Xu, X., Goddard, W.A., III: Accurate energies and structures for large water clusters using the X3LYP hybrid density functional. J. Phys. Chem. A. 108, 10518–10526 (2004)CrossRefGoogle Scholar
  60. 60.
    Fellers, R.S., Leforestier, C., Braly, L.B., Brown, M.G., Saykally, R.J.: Spectroscopic determination of the water pair potential. Science. 284, 945–948 (1999)CrossRefGoogle Scholar
  61. 61.
    Fajardo, M.E., Tam, S.: Observation of the cyclic water hexamer in solid parahydrogen. J. Chem. Phys. 115, 6807–6810 (2001)CrossRefGoogle Scholar
  62. 62.
    Tarmyshov, K.B., Müller-Plathe, F.: Ion binding to cucurbit[6]uril: structure and dynamics. J. Phys. Chem. B. 110, 14463–14468 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Kazan National Research Technological UniversityKazanRussian Federation

Personalised recommendations