Skip to main content
Log in

Supramolecular self-assembly of water-soluble cavitands: investigated by molecular dynamics simulation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this study, we have examined supramolecular self-assembly process of a hydrophobic guest with a water-soluble host known by the trivial name octa acid (OA). Two octa acids form a capsular assembly only in presence of a nonpolar guest(s). Size and shape of the guest control the stoichiometry of the capsular complex. Here, all atom molecular dynamics simulation has been utilized to investigate complex formation mechanisms of a nonpolar guest (nonylbenzene) with two OA cavitands. Nonylbenzene was encapsulated into the nonpolar cavity of OA capsule owing to solvophobic interactions. Upon encapsulation it was twisted and bent due to lack of free space within the capsule. These unusual forms obtained from the simulation study were in accord with experimental findings. The post-complexation attributes of the guest were regulated by the available free space within the OA and favorable non-covalent interactions between the guest and the walls of the OA capsule. In the identical simulation condition two OA cavitands did not form a capsule without a guest, thus indicating requirement of a guest during the self-assembly of OA cavitands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cram, D. J., Cram, J. M.: Host-guest chemistry. Science. 183, 803–809 (1974)

    Article  CAS  Google Scholar 

  2. Stoddart, J. F.: Host-guest chemistry. Annu. Rep. Prog. Chem. Sect. B. 85, 353–386 (1988)

    Article  CAS  Google Scholar 

  3. Rebek, J. Jr.: Introduction to the molecular recognition and self-assembly. PNAS. 106, 10423–10424 (2009)

    Article  CAS  Google Scholar 

  4. Lehn, J.-M.: Toward self-organization and complex matter. Science. 295, 2400–2403 (2002)

    Article  CAS  Google Scholar 

  5. Bejagam, K. K., Fiorin, G., Klein, M. L., Balasubramanian, S.: Supramolecular polymerization of benzene-1,3,5-tricarboxamide: a molecular dynamics simulation study. J. Phys. Chem. B. 118, 5218–5228 (2014)

    Article  CAS  Google Scholar 

  6. Wipff, G.: Computational approaches in supramolecular chemistry. Springer, Dordrecht (1994)

    Book  Google Scholar 

  7. Anslyn, E. V., Dougherty, D. A.: Modern physical organic chemistry. University Science Books, Sausalito (2006)

    Google Scholar 

  8. Mikulskis, P., Cioloboc, D., Andrejic, M., Khare, S., Brorsson, J., Genheden, S., Mata, R. A., Soderhjelm, P., Ryde, U.: Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host-guest binding energies. J. Comput. Aided Mol. Des. 28, 375–400 (2014)

    Article  CAS  Google Scholar 

  9. Caldararu, O., Olsson, M. A., Riplinger, C., Neese, F., Ryde, U.: Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T). J. Comput. Aided Mol. Des. 31, 87–106 (2017)

    Article  CAS  Google Scholar 

  10. Kulasekharan, R., Jayaraj, N., Porel, M., Choudhury, R., Sundaresan, A. K., Parthasarathy, A., Ottaviani, M. F., Jockush, S., Turro, N. J., Ramamurthy, V.: Guest rotation within a capsuleplex probed by NMR and EPR techniques. Langmuir. 26, 6943–6953 (2010)

    Article  CAS  Google Scholar 

  11. Choudhury, R., Barman, A., Prabhakar, R., Ramamurthy, V.: Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies. J. Phys. Chem. B. 117, 398–407 (2013)

    Article  CAS  Google Scholar 

  12. Samanta, S. R., Choudhury, R., Ramamurthy, V.: Photoisomerization and photooxygenation of 1,4-diaryl-1,3-dienes in a confined space. J. Phys. Chem. A. 118, 10554–10562 (2014)

    Article  CAS  Google Scholar 

  13. Gupta, S., Choudhury, R., Krois, D., Wagner, G., Brinker, U. H., Ramamurthy, V.: Photochemical generation and reactivity of carbenes within an organic cavitand and capsule: photochemistry of adamantanediazirines. Org. Lett. 13, 6074–6077 (2011)

    Article  CAS  Google Scholar 

  14. Choudhury, R., Gupta, S., Da Silva, J. P., Ramamurthy, V.: Deep-cavity cavitand octa acid as a hydrogen donor: photofunctionalization with nitrenes generated from azidoadamantanes. J. Org. Chem. 78, 1824–1832 (2013)

    Article  CAS  Google Scholar 

  15. Antony, J., Sure, R., Grimme, S.: Using dispersion-corrected density functional theory to understand supramolecular binding thermodynamics. Chem. Commun. 51, 1764–1774 (2015)

    Article  CAS  Google Scholar 

  16. Gibb, C. L. D., Gibb, B. C.: Templated assembly of water-soluble nano-capsules: inter-phase sequestration, storage, and separation of hydrocarbon gases. J. Am. Chem. Soc. 128, 16498–16499 (2006)

    Article  CAS  Google Scholar 

  17. Ramamurthy, V., Sivaguru, J.: Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem. Rev. 116, 9914–9993 (2016)

    Article  CAS  Google Scholar 

  18. Ramamurthy, V.: Photochemistry within a water-soluble organic capsule. Acc. Chem. Res. 48, 2904–2917 (2015)

    Article  CAS  Google Scholar 

  19. Turro, N. J., Ramamurthy, V., Scaiano, J. C.: Modern molecular photochemistry of organic molecules. University Science Books, Sausalito (2010)

    Google Scholar 

  20. Jayaraj, N., Zhao, Y., Parthasarathy, A., Porel, M., Liu, R. S. H., Ramamurthy, V.: Nature of supramolecular complexes controlled by the structure of the guest molecules: Formation of octa acid based capsuleplex and cavitandplex. Langmuir. 25, 10575–10586 (2009)

    Article  CAS  Google Scholar 

  21. Gibb, C. L. D, Gibb, B. C.: Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J. Comput. Aided Mol. Des. 28, 319–325 (2014)

    Article  CAS  Google Scholar 

  22. Trott, O., Olson, A. J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2009)

    Google Scholar 

  23. Spoel, V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J.: GROMACS: fast, flexible, and free. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  24. Kaminski, A. G., Friesner, A. R., Tirado-Rives, J., Jorgensen, L. W.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 105, 6474–6487 (2001)

    Article  CAS  Google Scholar 

  25. Jorgensen, L. W., Tirado-Rives, J.: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988)

    Article  CAS  Google Scholar 

  26. Tzanov, A. T., Guendet, M. A., Tuckerman, M. E.: How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study. J. Phys. Chem. B. 118, 6539–6552 (2014)

    Article  CAS  Google Scholar 

  27. Halgren, T. A.: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996)

    Article  CAS  Google Scholar 

  28. Ribeiro, A. A. S. T., Horta, B. A. C., Alencastro, R. B. d.: MKTOP: a program for automatic construction of molecular topologies. J. Braz. Chem. Soc. 19, 1433–1435 (2008)

    Article  CAS  Google Scholar 

  29. Breneman, C. M., Wiberg, K. B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)

    Article  CAS  Google Scholar 

  30. Lee, C., Yang, W., Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785 (1988)

    Article  CAS  Google Scholar 

  31. Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 38, 3098 (1988)

    Article  CAS  Google Scholar 

  32. Frish, M. J., et al.: Gaussian 98, revision A.9. Gaussian Inc., Pittsburgh (1998)

    Google Scholar 

  33. Darden, T., York, D., Pederson, L.: Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)

    Article  CAS  Google Scholar 

  34. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  35. DeLano, W.L.: The PyMOL molecular graphics system. DeLano Scientific, San Carlos (2002)

    Google Scholar 

Download references

Acknowledgements

Kassandra Cendejas thanks Arkansas Department of Higher Education for SURF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Choudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cendejas, K., Parker, H.E., Molina, D. et al. Supramolecular self-assembly of water-soluble cavitands: investigated by molecular dynamics simulation. J Incl Phenom Macrocycl Chem 89, 199–205 (2017). https://doi.org/10.1007/s10847-017-0750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0750-4

Keywords

Navigation