DFT study on the complexation of anions with 1,4,7,10,13,16-hexaazacyclooctodeca-2,5,8,11,14,17-hexaene

  • Laize A. F. Andrade
  • Josué M. Silla
  • João Guilherme P. Mendonça
  • Matheus P. Freitas
Original Article


Macrocyclic compounds have been widely used as anion carriers, as they play important functions in chemical and biological systems. This work reports a theoretical study on free 1,4,7,10,13,16-hexaazacyclooctodeca-2,5,8,11,14,17-hexaene (HAC), as well as its complex with fluoride, chloride, bromide and acetate anions, with and without the presence of the sodium counterion, in the gas phase and implicit solvents (cyclohexane and acetonitrile), at the ωB97X-D/6-311G(d,p) level. The negative ∆G0 values indicate that the crown-anion complex is prone to be formed due to hydrogen bonds in all tested media. Nevertheless, such interactions weaken as the solvent polarity increases. The ΔG0 C6H12 values decrease when the counterion is taken into account, reinforcing the formation of the Na+‒HAC‒X complex. However, the complexation is disfavored in polar solution, since the presence of the counterion increases the HAC-anion distance. Natural bond orbital analysis, the quantum theory of atoms in molecules and non-covalent interactions methods explored the nature and strength of the hydrogen bond interactions, while spin–spin coupling constant calculations for the fluoride-based complex (1h J F,H(N)) gave insight into the potential of this NMR parameter to experimentally probe the complexation of HAC with fluoride.


Anionic complex Theoretical calculations QTAIM NBO NCI NMR 



The authors are grateful to CAPES, CNPq and FAPEMIG (grant number: APQ-00383/15), for the financial support, studentship and fellowships.

Supplementary material

10847_2017_749_MOESM1_ESM.doc (572 kb)
Supplementary material 1 (DOC 573 KB)


  1. 1.
    Mao, Y., Chen, H., Han, J., Wang, Y., Tang, X., Ni, L., Wang, L.: Selective transport of cadmium(II) through hollow fiber‑supported liquid membrane microextraction using diaza‑18‑crown‑6 in ionic liquids as carrier. J. Iran Chem. Soc. 13, 403–410 (2016)CrossRefGoogle Scholar
  2. 2.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)CrossRefGoogle Scholar
  3. 3.
    Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004)CrossRefGoogle Scholar
  4. 4.
    Leevy, W.M., Weber, M.E., Gokel, M.R., Hughes-Strange, G.B., Daranciang, D.D., Ferdani, R., Gokel, G.W.: Correlation of bilayer membrane cation transport and biological activity in alkyl-substituted lariat ethers. Org. Biomol. Chem. 3, 1647–1652 (2005)CrossRefGoogle Scholar
  5. 5.
    Ramljak, T.R., Majerski, K.M., Bertoša, B.: Alkali metal ion complexation of adamantane functionalized diaza-bibracchial lariat ethers. Croat. Chem. Acta 85, 559–568 (2012)CrossRefGoogle Scholar
  6. 6.
    Mendonça, J.G.P., Silla, J.M., Andrade, L.A.F., Fernandes, S.A., Cormanich, R.A., Freitas, M.P.: Theoretical and NMR experimental insights on urea. thiourea and diindolyurea as fluoride carriers. J. Mol. Struct. 1114, 13–20 (2016)CrossRefGoogle Scholar
  7. 7.
    Silva, W.G.D. P., Silla, J.M., Cormanich, R.A., Fernandes, S.A., Freitas, M.P.: The role of nonbonding interactions and the presence of fluoride on the conformational isomerism of 1.2-ethanediol. Chem. Phys. 473, 17–23 (2016)CrossRefGoogle Scholar
  8. 8.
    Miyaji, H., Kim, D.-S., Chang, B.-Y., Su-Moon Park, S.-M., Ahn, K.H.: Electrochemical and 19F NMR detection of anions, ion-pairs, and a zwitterionic amino acid with a ferrocene-based hetero-ditopic receptor bearing o-carboxamido)trifluoroacetophenone and crown-ether ligands. Bull. Korean Chem. Soc. 29, 2355–2360 (2008)CrossRefGoogle Scholar
  9. 9.
    Kodama, M., Koike, T., Mahatma, A.B., Kimura, E.: Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N’,N’’,N”’,N””-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N,N’N”, N”’N””, N’”” hexaacetic acid. Inorg. Chem. 30, 1270–1273 (1991)CrossRefGoogle Scholar
  10. 10.
    Bencini, A., Bianchi, A., Dapporto, J.P., Fusi, V., Garcia-Espaiia, E., Micheloni, J.M., Paoletti, P., Paoli, J.P., Rodriguez, A., Valtancolil, B.: Thermodynamic, kinetic, and structural study of the ligational properties of the macrobicyclic aza-ligand 4,7,10,17,23-pentamethyl-1,4,7,10,13,17,23-heptaazabicyclo[11.7.5]pentacosane (L1) and of its macrocyclic precursor 1,4,7,13-tetramethyl-1,4,7,10,13,16-hexaazacyclooctadecane (L2). Crystal structure of [Zn(L1)(H2O)](BPh4)2. Inorg. Chem. 32, 2753–2760 (1993)CrossRefGoogle Scholar
  11. 11.
    Chandrasekhar, S., Fortier, D.C., Mcauley, A.: syntheses of chromium and copper complexes of hexaazamacrocycles. Crystal structures of chromium (III) complexes of 1,4,7,10,13,16-hexaazacyclooctadecane and 1,4,7,11,14,17-hexaazacycloeicosane. Inorg. Chem. 32, 1424–1429 (1993)CrossRefGoogle Scholar
  12. 12.
    Kurisaki, T., Matsuki, Y., Wakita, H.: Synthesis and equilibrium study of nickel(II), copper(II), and zinc(II) complexes with N,N0,N00,N000,N0000,N00000-hexakis(2-aminoethyl)-1,4,7,10,13,16-hexaazacyclooctadecane in an aqueous solution. Polyhedron 65, 200–205 (2013)CrossRefGoogle Scholar
  13. 13.
    Alqaradawi, S.Y., Bazzi, H.S., Mostafa, A., Nour, E.-M.: Novel charge transfer complexes of the donor 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16-hexaazacyclooctadecane and the acceptors iodine, TCNE, and TCNQ. J. Mol. Struct. 998, 126–135 (2011)CrossRefGoogle Scholar
  14. 14.
    Mandoumi, N., Nasri, F., Shariati-Rad, M., Taherpour, A., Gholivand, M.B., Shamsipur, M.: Spectrophotometric study of formation, structure, stability and kinetics of charge-transfer complexation of iodine with 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16-hexaazacyclooctadecane in chloroform solution. Application of hard-modeling approaches and theoretical calculations. J. Mol. Struct. 1047, 179–185 (2013)CrossRefGoogle Scholar
  15. 15.
    Turias, F., Poater, J., Chauvin, R., Poater, A.: How carbo-benzenes fit molecules in their inner core as do biologic ion carriers? Struct. Chem. 27, 249–259 (2016)CrossRefGoogle Scholar
  16. 16.
    Ziegler, B.E., Lecours, M., Marta, R.A., Featherstone, J., Fillion, E., Hopkins, W.S., Steinmetz, V., Keddie, N.S., O’Hagan, D., McMahon, T.B.: Janus face aspect of all-cis 1,2,3,4,5,6-hexafluorocyclohexane dictates remarkable anion and cation interactions in the gas phase. J. Am. Chem. Soc. 138, 7460–7463 (2016)CrossRefGoogle Scholar
  17. 17.
    Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  18. 18.
    Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A.: Self-consistent molecular orbital methods. XX. Basis set for correlated wave-functions. J. Chem. Phys. 72, 650–654 (1980)CrossRefGoogle Scholar
  19. 19.
    Cossi, M., Rega, N., Scalmani, G., Barone, V.: Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003)CrossRefGoogle Scholar
  20. 20.
    Glendening, E.D., Badenhoop, J.K., Reed, A. E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F.: NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison (2013)Google Scholar
  21. 21.
    Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)CrossRefGoogle Scholar
  22. 22.
    Contreras-García, J., Yang, W.: Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. J. Phys. Chem. A 115, 12983–12990 (2011)CrossRefGoogle Scholar
  23. 23.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford (2009)Google Scholar
  24. 24.
    Bertoli, A.C., Carvalho, R., Freitas, M.P., Ramalho, T.C., Mancini, D.T., Oliveira, M.C., Varennes, A., Dias, A.: Theoretical spectroscopic studies and identification of metal-citrate (Cd and Pb) complexes by ESI-MS in aqueous solution. Spectrochim. Acta A 137, 271–280 (2015)CrossRefGoogle Scholar
  25. 25.
    Grabowski, J.S.: What is covalency of hydrogen bonding? Chem. Rev. 111, 2597–2625 (2011)CrossRefGoogle Scholar
  26. 26.
    Koch, U., Popelier, P.L.A.: Characterization of C–O–H hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747–9754 (1995)CrossRefGoogle Scholar
  27. 27.
    Pan, A., Biswas, T., Rakshit, A.K., Moulik, S.P.: Enthalpy–entropy compensation (EEC) effect: A revisit. J. Phys. Chem. B 119, 15876 – 15884 (2015)CrossRefGoogle Scholar
  28. 28.
    Antunes, D.P., Antunes, D.P., Matos, R.C., Kamozaki, M.B.B., Pagani, C., Salgado, I.O.: Fluoride ion release from glass ionomer cements before and after recharge and surface protection. Pesq. Bras. Odontoped. Clin. Integ. 13, 61–67 (2013)CrossRefGoogle Scholar
  29. 29.
    Gomes, E., Guez, M.A.U., Martin, N., Silva, R.: Enzimas termoestáveis: Fontes, produção e aplicação industrial. Quim. Nova. 30, 136–145 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhao, H.: Protein stabilization and enzyme activation in ionic liquids: specific ion effects. J. Chem. Technol. Biotechnol. 91, 25–50 (2016)CrossRefGoogle Scholar
  31. 31.
    Venkataramanan, N.S., Ambigapathy, S.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83, 387–400 (2015)CrossRefGoogle Scholar
  32. 32.
    Qin, L., Hartley, A., Turner, P., Elmes, R.B.P., Jolliffe, K.A.: Macrocyclic squaramides: anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 7, 4563–4572 (2016)CrossRefGoogle Scholar
  33. 33.
    Ema, T., Okuda, K., Watanabe, S., Yamasaki, T., Minami, T., Esipenko, N.A., Anzenbacher, P.: Selective anion sensing by chiral macrocyclic receptors with multiple hydrogen-bonding sites. Org. Lett. 16, 1302–1305 (2014)CrossRefGoogle Scholar
  34. 34.
    Ghosh, S.K., Ishida, M., Li, J., Cha, W.-Y., Lynch, V.M., Kim, D., Sessler, J.L.: Synthesis and anion binding studies of o-phenylenevinylene-bridged tetrapyrrolic macrocycle as an expanded analogue of calix[4]pyrrole. Chem. Commun. 50, 3753–3756 (2014)CrossRefGoogle Scholar
  35. 35.
    McNally, B.A., Koulov, A.V., Lambert, T.N., Smith, B.D., Joos, J.-B., Sisson, A.L., Clare, J.P., Sgarlata, V., Judd, L.W., Magro, G., Davis, A.P.: Structure–activity relationships in cholapod anion carriers: Enhanced transmembrane chloride transport through substituent tuning. Chem. Eur. J. 14, 9599–9606 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Laize A. F. Andrade
    • 1
  • Josué M. Silla
    • 1
  • João Guilherme P. Mendonça
    • 1
    • 2
  • Matheus P. Freitas
    • 1
  1. 1.Department of ChemistryFederal University of LavrasLavrasBrazil
  2. 2.Department of ChemistryFederal University of ViçosaViçosaBrazil

Personalised recommendations