Comparison of cyclodextrins and urea as hosts for inclusion of drugs

Review Article
  • 173 Downloads

Abstract

Cyclodextrins have been extensively used for inclusion of various drugs for improvement of pharmaceutical characteristics of diverse nature. Numerous derivatives of cyclodextrins are currently available and are being subjected to continuous investigations. On the other hand, urea was previously being used as host for inclusion of straight chain linear compounds. However, development of a modified technique has opened flood gates for inclusion of non-linear drugs containing cyclic moieties. Cis-retinoic acid, nicorandil, vitamin E, amiloride, glipizide, enalapril maleate, simvastatin, lafutidine and ezetimbe are some of the drugs which have already been investigated for improvement of pharmaceutical characteristics. These characteristics include improvement of stability, content uniformity, dissolution profile and rheological behavior. Recently, pesticide-fertilizer combination has also been reported to serve the dual purpose of pesticide cum fertilizer and for improvement in safe handling and formulation characteristics. All FDA approved cyclodextrins are safe chemicals for human use within permissible limits. Urea is a component of normal physiological processes of body in human beings and other mammals. Urea is far cheaper when compared to cyclodextrins. Studies reveal that despite unique characteristics of urea like high solubility, non-toxicity, stability, inexpensiveness, biodegradability and easy availability, the use of urea as a host for inclusion of drugs has been grossly overlooked by researchers. Immense potential of urea as a host for inclusion of drugs need to be explored for improvement of pharmaceutical characteristics. The relative use of both cyclodextrins and urea as hosts for inclusion of drugs has been briefly reviewed in the present article.

Keywords

Urea Toxicity Cyclodextrin Inclusion complex Dissolution profile Content uniformity 

References

  1. 1.
    Lehn, J.M.: Towards complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 99, 4763–4768 (2002)CrossRefGoogle Scholar
  2. 2.
    Findlay, R.A.: Adductive crystallization. In: Schoen, H.M., Mcketta, J.J. (eds.) Interscience Library of Chemical Engineering and Processing. New Chemical Engineering Separation Techniques, vol. 1, 257–318. Interscience Publishers, New York (1962)Google Scholar
  3. 3.
    Bhatnagar, V.M.: Clathrate compounds of urea and thiourea. J. Struc. Chem. 8(3), 513–529 (1968)CrossRefGoogle Scholar
  4. 4.
    Frank, S.G.: Inclusion compounds. J. Pharm. Sci. 64, 1585–1604 (1975)CrossRefGoogle Scholar
  5. 5.
    Sinko, P.J. (ed.): Martin’s Physical Pharmacy and Pharmaceutical Sciences. 6th edn, pp. 197–222. Wolters Kluwer, New Delhi (2005)Google Scholar
  6. 6.
    Dyadin, Y.A., Terekhova, I.S.: Classical description of inclusion compounds. In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry, vol. 2, pp. 253–260. Marcel Dekker, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Powell, H.M.: The structure of molecular compounds. Part IV. Clathrate compounds. J. Chem. Soc. 61–72 (1948). doi: 10.1039/JR9480000061
  8. 8.
    Schlenk, W.: Urea addition of aliphatic compounds. Ann. Chem. 565, 204–240 (1949)CrossRefGoogle Scholar
  9. 9.
    Weber, E.: Clathrate chemistry today-some problems and reflections. Topics Curr. Chem. 140, 3–20 (1989)Google Scholar
  10. 10.
    Madan, A.K., Thakral, S.: Urea as an adductor for branched drug molecules. In: Fitzpatrick, D.W., Ulrich, H.J. (eds.) Macrocyclic Chemistry: New Research Developments. Chapter 18, pp. 469–498. Nova Science Publishers Inc., New York (2010)Google Scholar
  11. 11.
    Bishop, R., Dance, I.G.: New type of helical inclusion compounds. Topics Curr. Chem. 149, 139–188 (1988)Google Scholar
  12. 12.
    Weber, E., Josel, H.P.: A proposal for the classification and nomenclature of host-guest type compounds. J. Incl. Phenom. 1, 79–85 (1983)CrossRefGoogle Scholar
  13. 13.
    Cram, D.J.: Host-guest complex. In: Boschke, E.L. (ed.) Topics in Current Chemistry, vol. I-III, pp. 1982–1984. Springer Verlag, Berlin (1986)Google Scholar
  14. 14.
    Steed, J.W., Atwood, J.L. (eds.): Supramolecular Chemistry, pp. 1–6. Wiley, Chichester (2000)Google Scholar
  15. 15.
    Powell, H.M.: Introduction. In: Atwood, J.W., Davis, J.E.D., MacNicol, D.D. (eds.) Inclusion compounds, vol. 1, pp. 1–28. Academic Press, London (1984)Google Scholar
  16. 16.
    Harris, K.D.M.: Meldola Lecture: understanding properties of urea and thiourea inclusion compounds. Chem. Soc. Rev. 76, 279–289 (1997)CrossRefGoogle Scholar
  17. 17.
    George, A.R., Harris, K.D.M.: Representing and understanding geometric features of one-dimensional tunnel structures in solid inclusion compounds. J. Mol. Graphics. 13, 138–141 (1995)CrossRefGoogle Scholar
  18. 18.
    Hagan, M.M. (ed.): Clathrate inclusion compounds, pp. 30–75. Reinhold Publishing Corporation, California (1962)Google Scholar
  19. 19.
    Rapson, W.S., Saunder, D.H., Stewart, E.T.: Molecular compound formation in the polyphenyl series; some compounds formed by 4:4′-dinitrodiphenyl. J. Chem. Soc. (1946). doi: 10.1039/JR9460001110 Google Scholar
  20. 20.
    Rundle, R.E., Baldwin, R.R.: The configuration of starch and the starch-iodine complex: The dichroism of flow of starch-iodine solutions. J. Am. Chem. Soc. 65, 554–558 (1943)CrossRefGoogle Scholar
  21. 21.
    Lahr, P.H., Williams, H.L.: Properties of some rare gas clathrate compounds. J. Phys. Chem. 63, 1432–1434 (1959)CrossRefGoogle Scholar
  22. 22.
    Williams, D.J., Lawton, D.: Deviations from C3 symmetry of the tri-o-thymodite molecule in different crystalline environments: X-ray determinations of the unsolvated form and of typical cavity and channel inclusion compounds. Tetrahedron Lett. 16, 111–114 (1975)CrossRefGoogle Scholar
  23. 23.
    Flippen, J.L., Karle, J.: Heptanol as a guest molecule in Dianin’s compound. J. Phys. Chem. 75, 3566–3567 (1971)CrossRefGoogle Scholar
  24. 24.
    D’Souza, V.T., Lipkowitz, K.B.: Cyclodextrins: introduction. Chem. Rev. 98, 1741–1742 (1998)CrossRefGoogle Scholar
  25. 25.
    Nicolini, C., Ramoa, F., Ribeiro, E.J., Duckstein, L. (eds.): Zeolites: Science and Technology. Springer, Netherland (1987)Google Scholar
  26. 26.
    Makha, M., Raston, C.L., Sobolev, A.N., Barbour, L.J., Turner, P.: Endo- versus exo-cavity interplay of p-benzylcalix[4]arene with spheroidal molecules. Cryst. Eng. Comm. 8, 306–308 (2006). doi:  10.1039/B600550K CrossRefGoogle Scholar
  27. 27.
    Lin, R.L., Fang, G.S., Sun, W.Q., Liu, J.X.: Aniline-containing guests recognized by α,α’,δ,δ’-tetramethyl-cucurbit[6]uril host. Sci.Rep. 6, 39057–39060 (2016). doi: 10.1038/srep39057 CrossRefGoogle Scholar
  28. 28.
    Hardie, M.J., Johnson, J.A., Raston, C.L., Webb, H.R.: Cooperative hydrogen bonding and yttrium (III) complexation in the assembly of molecular capsules. Chem. Commun. 10, 849–850 (2000). doi: 10.1039/A910256F CrossRefGoogle Scholar
  29. 29.
    Tarantula, O., Hill, P.H., Khan, N.S., Carroll, P.J., Dmochowski, I.J.: Crystallographic observation of ‘induced fit’ in a cryptophane host–guest model system. Nat. Commun. 1, 148–149 (2010). doi: 10.1038/ncomms1151 CrossRefGoogle Scholar
  30. 30.
    Vaijayanthimala, G., Krishan, V., Mandal, S.K.: Cyclic porphyrin dimers as hosts for coordinating ligands. J.Chem. Sci. 120(1), 115–129 (2008)CrossRefGoogle Scholar
  31. 31.
    Hu, x.B., Chen, Z., Chen, L., Zhang, L., Hou, J.L., Li, Z.T.: Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chem. Commun. 48, 10999–11001 (2012). doi: 10.1039/C2CC36027F CrossRefGoogle Scholar
  32. 32.
    Allen, L.V., Popovich, N.G., Ansel, H.C. (eds.): Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. 8th edn, pp. 93–140. Lippincott Williams and Wilkins, Philadelphia (2005)Google Scholar
  33. 33.
    Huang, Y., Dai, W.G.: Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B. 4(1), 18–25 (2014)CrossRefGoogle Scholar
  34. 34.
    Dhirendra, K.S., Lewis, S., Udupa, N., Atin, K.: Solid dispersions: a review. Pak. J. Pharm. Sci. 22(2), 234–246 (2009)Google Scholar
  35. 35.
    Ingle, U.S., Gaikwad, P.D., Bankar, V.H., Pawar, S.P.: A review on solid dispersion: a dissolution enhancement technique. IJRAP 2(3), 751–757 (2011)Google Scholar
  36. 36.
    Baghel, S., Cathcart, H., O’Reilly, N.J.: Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 105, 2527–2544 (2016)CrossRefGoogle Scholar
  37. 37.
    Szejtli, J.: Utilization of cyclodextrins in industrial products and processes. J. Mater. Chem. 7, 575–587 (1997)CrossRefGoogle Scholar
  38. 38.
    Huh, K.M., Lee, S.C., Ooya, J., Park, K.: Polymeric delivery system for poorly soluble drugs. In: Swarbrick, J. (ed.) Encyclopedia Pharmaceutical Technology, vol. 5, 3rd edn, pp. 2912–2917. Informa HealthCare, New York (2007)Google Scholar
  39. 39.
    Yoshioka, S., Stella, V.J. (eds.): Stability of Drugs and Dosage Forms. pp. 106–107. Springer, Netherlands (2006)Google Scholar
  40. 40.
    Marangoci, N., Mares, M., Silion, M., Fifere, A., Varganici, C., Nicolescu, A., Deleanu, C., Coroaba, A., Pinteala, M., Simionescu, B.: Inclusion complex of a new propiconazole derivative with β-cyclodextrin: NMR, ESI–MS and preliminary pharmacological studies. Results Pharma. Sci. 1(1), 27–37 (2011). doi: 10.1016/j.rinphs.2011.07.001 CrossRefGoogle Scholar
  41. 41.
    Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015 (2015). doi: 10.1155/2015/198268 Google Scholar
  42. 42.
    Szejtli, J., Osa, T. (eds.): Cyclodextrins. In: Comprehensive Supramolecular Chemistry, vol. 3, Pergamon, Oxford (1996)Google Scholar
  43. 43.
    Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2(4), 1–15 (2004)CrossRefGoogle Scholar
  44. 44.
    Loftsson, T., Masson, M., Brewster, M.E.: Self association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)CrossRefGoogle Scholar
  45. 45.
    Das, S., Rajabalaya, R., David, S., Gani, N., Khanam, J., Nanda, A.: Cyclodextrins-the molecular structure. RJPBCS 4(2), pp. 1694–1720 (2013)Google Scholar
  46. 46.
    Katageri, A.R., Sheikh, M.A.: Cyclodextrin: a gift to pharmaceutical world review. IRJP 3(1), 52–56 (2012)Google Scholar
  47. 47.
    Anjana, M., Nair, S.C., Joseph, J.: An updated review of cyclodextrins–An enabling technology for challenging pharmaceutical formulations. Int. J. Pharm. Pharm. Sci. 5(3), 54–58 (2013)Google Scholar
  48. 48.
    Shimpi, S., Chauhan, B., Shimpi, P.: Cyclodextrins: application in different routes of drug administration. Acta Pharm. 55, 139–156 (2005)Google Scholar
  49. 49.
    Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  50. 50.
    Valle, E.M.: Cyclodextrins and their uses: A review. Process Biochem. 39(9), 1033–1046 (2004). doi: 10.1016/S0032-9592(03)00258-9 CrossRefGoogle Scholar
  51. 51.
    Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). doi: 10.1021/cr500081p CrossRefGoogle Scholar
  52. 52.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)CrossRefGoogle Scholar
  53. 53.
    Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Rel. 123, 78–99 (2007)CrossRefGoogle Scholar
  54. 54.
    Uekema, K., Fujinaga, T., Hirayama, F.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)CrossRefGoogle Scholar
  55. 55.
    Cui, L., Zhang, Z., Sun, E., Jia, X., Qian, Q.: Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin. J. Nat. Sci. Biol. Med. 4(1), 201–206 (2013). doi: 10.4103/0976-9668.107291 CrossRefGoogle Scholar
  56. 56.
    Singhla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002)CrossRefGoogle Scholar
  57. 57.
    Garbow, J.R., Likos, J.J., Schroeder, S.A.: Structure, dynamics, and stability of beta-cyclodextrin inclusion complexes of aspartame and neotame. J. Agric. Food Chem. 49(4), 2053–2060 (2001)CrossRefGoogle Scholar
  58. 58.
    Teixeria, L.R., Sinisterra, R.D., Vieria, R.P., Scarlatelli-Lima, A., Moraes, M.F.D., Doretto, M.C., Denadai, A.M., Beraldo, H.: An inclusion compound of anticonvulsant sodium valproate into α-cyclodextrin: physic-chemical characterization. J. Incl. Phenom. Macrocycl. Chem. 54, 133–138 (2006)CrossRefGoogle Scholar
  59. 59.
    Loftsson, T., Peterson, D.S.: Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev. Ind. Pharm. 24, 365–370 (1998)CrossRefGoogle Scholar
  60. 60.
    Ioele, G., De Luca, M., Ragno, G.: Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med. Chem. 6(1), 35–43 (2014). doi: 10.4155/fmc.13.187 CrossRefGoogle Scholar
  61. 61.
    Rivas-Granizo, P.E., Giorgretti, L., Ferraz, H.G.: Photostability of loratadine inclusion complexes with natural cyclodextrins. Int. J. Photoenergy (2015). doi: 10.1155/2015/583052 Google Scholar
  62. 62.
    Pomponio, R., Gotti, R., Fiori, J., Cavrini, V., Mura, P., Cirri, M., Maestrelli, F.: Photostability studies on nicardipine-cyclodextrin complexes by capillary electrophoresis. J. Pharm. Biomed. Anal. 35(2), 267–275 (2004)CrossRefGoogle Scholar
  63. 63.
    Cwiertnia, B., Hladon, T., Stobiecki, M.: Stability of diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J. Pharm. Pharmacol. 51, 1213–1218 (1999)CrossRefGoogle Scholar
  64. 64.
    Ndlebe, V.J., Brown, M.E., Glass, B.D.: The thermal stability of triprolidine hydrochloride and its mixture with cyclodextrin and glucose. J. Therm. Analy. Calori. 77(2), 445–457 (2004)CrossRefGoogle Scholar
  65. 65.
    Popescu, C., Manda, P., Juluri, A., Janga, K.Y., Cidda, M., Murthy, S.N.: Enhanced dissolution efficiency of zalephon solid dispersions via modified β-cyclodextrins molecular inclusion complexes. J. Pharm. Pharm. Sci. 1(1), 1–10 (2015)CrossRefGoogle Scholar
  66. 66.
    Yoganada, R., Chowdary, K.P.R.: Enhancement of solubility, dissolution rate and bioavailability of efavirenz by cyclodextrins and solutol HS15—A factorial study. Int. J. Drug. Dev. Res. 5(1), 135–142 (2013)Google Scholar
  67. 67.
    Chowdary, K.P.R., Reddy, M.V.: Formulation development studies on enhancement of solubility and dissolution rate of etoricoxib by cyclodextrin complexation. Asian J. Chem. 23(4), 1445–1448 (2011)Google Scholar
  68. 68.
    Uekama, K., Ikegami, K., Wang, Z.: Inhibitory effect of 2-hydroxypropyl-β-cyclodextrin on crystal growth of nifedipine during storage: superior dissolution and oral bioavailability compared with polyvinylpyrrolidone K-30. J. Pharm. Pharmacol. 44, 73–78 (1992)CrossRefGoogle Scholar
  69. 69.
    Aggarwal, S., Singh, P.N., Mishra, B.: Studies on solubility and hypoglycemic activity of gliclazide β-cyclodextrin-hydroxypropylmethylcellulose complexes. Pharmazie. 57, 191–193 (2002)Google Scholar
  70. 70.
    Latrofa, A., Trapani, G., Franco, M.: Complexation of phenytoin with some hydrophilic cyclodextrins: effect on aqueous solubility, dissolution rate and anti-convulsant activity in mice. Eur. J. Pharm. Biopharm. 52, 65–73 (2001)CrossRefGoogle Scholar
  71. 71.
    Ahn, H.J., Kim, K.M., Choi, S.J., Kim, C.K.: Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev. Ind. Pharm. 23, 397–401 (1997)CrossRefGoogle Scholar
  72. 72.
    Londhe, V., Nagarsenker, M.: Comparison between hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidine as carriers for carbamazepine solid dispersions. Indian J. Pharm. Sci. 61, 237–240 (1999)Google Scholar
  73. 73.
    Jayachandra Babu, R., Pandit, J.K.: Effect of aging on the dissolution stability of glibenclamide/ β-cyclodextrin complex. Drug Dev. Ind. Pharm. 25(11), 1215–1219 (1995). doi: 10.1081/DDC-100102291 CrossRefGoogle Scholar
  74. 74.
    Cavallari, C., Abertini, B., Rodriguez, M.L.G., Rodriguez, L.: Improved dissolution behavior of steam granulated piroxicam. Eur. J. Pharm. Biopharm. 54, 65–73 (2002)CrossRefGoogle Scholar
  75. 75.
    Sanghavi, N.M., Choudhari, K.B., Matharu, R.S., Viswanathan, L.: Inclusion complexation of lorazepam with β-cyclodextrin. Drug Dev. Ind. Pharm. 19, 701–712 (1993)CrossRefGoogle Scholar
  76. 76.
    Dhanraju, M.D., Santil, K., Baskaran, T., Moorthy, M.S.R.: Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug. Dev. Ind. Pharm. 24, 583–587 (1998)CrossRefGoogle Scholar
  77. 77.
    Bettinetti, G., Gazzaniga, A., Mura, P., Giordano, F., Setti, M.: Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev. Ind. Pharm. 18, 39–53 (1992)CrossRefGoogle Scholar
  78. 78.
    Meilcarek, J., Czernielewaska, A., Czarczynska, B.: Inclusion complexes of felodipine and amlodipine with methyl-β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 54, 17–21 (2006)CrossRefGoogle Scholar
  79. 79.
    Kaukonen, A.M., Lennernas, H., Mannermaa, J.P.: Water soluble β-cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evaluation of spiranolactone bioavailability from solutions of β-cyclodextrin derivatives in rats. J Pharm. Pharmacol. 50, 611–619 (1998)CrossRefGoogle Scholar
  80. 80.
    Jain, A.C., Adeyeye, M.C.: Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danzol-SBE inclusion complexes. Int. J. Pharm. 212, 177–186 (2001)CrossRefGoogle Scholar
  81. 81.
    Arias, M.J., Moyano, J.R., Munoz, P., Gines, J.M., Justo, A., Giordano, F.: Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev. Ind. Pharm. 26, 253–259 (2000)CrossRefGoogle Scholar
  82. 82.
    Medlicott, N.J., Foster, K.A., Audis, K.L., Gupta, S., Stella, V.J.: Comparison of effects of potential parenteral vehicles for poorly water soluble anticancer drugs on cultured endothelial cells. J. Pharm. Sci. 87, 1138–1143 (1998)CrossRefGoogle Scholar
  83. 83.
    Funasaki, N., Kawaguchi, R., Hada, S., Neya, S.: Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions. J. Pharm. Sci. 88(8), 759–762 (1999)CrossRefGoogle Scholar
  84. 84.
    Jagdale, S.C., Gawali, V.U., Kuchekar, B.S., Chabukswar, A.R.: Formulation and in vitro evaluation of taste-masked oro-dispersible dosage form of diltiazem hydrochloride. Braz. J. Pharm. Sci. 47(4), 907–916 (2011)CrossRefGoogle Scholar
  85. 85.
    Patel, A.R., Vavia, P.R.: Preparation and evaluation of taste masked famotidine formulation using drug/ β-cyclodextrin/ polymer ternary complexation approach. AAPS Pharm. Sci. Tech. 9(2), 544–550 (2008)CrossRefGoogle Scholar
  86. 86.
    Serni, U.: Rheumatic diseases-clinical experience with piroxicam beta-cyclodextrin. Eur. J. Rheumatol. Inflamm. 12, 47–54 (1993)Google Scholar
  87. 87.
    Blanchard, J., Ugwu, S.O., Bhardwaj, R., Dorr, R.T.: Development and testing of improved phenytoin using 2-hydroxypropyl-betacyclodextrin. Pharm. Dev. Technol. 5, 333–338 (2000)CrossRefGoogle Scholar
  88. 88.
    Vafaei, S.Y., Dinarvand, R., Esmaeili, M., Mahjub, R., Toliyat, T.: Controlled-release drug delivery system based on fluocinolone acetonide-cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm. Dev. Technol. 26, 1–7 (2014)Google Scholar
  89. 89.
    Nicolazzi, C., Venard, V., Le Faou, A., Finance, C.: In vitro antiviral activity of the ganciclovir complexed with beta-cyclodextrin on human cytomegalovirus strains. Antiviral Res. 54, 121–127 (2002)CrossRefGoogle Scholar
  90. 90.
    Bhardwaj, R., Dorr, R.T., Blanchard, J.: Approaches to reducing toxicity of parenteral anticancer drug formulations using cyclodextrins. PDA J. Pharm. Sci. Technol. 54(3), 233–239 (2000)Google Scholar
  91. 91.
    Li, J., Guo, Y., Zografi, G.: The solid state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91, 229–243 (2002)CrossRefGoogle Scholar
  92. 92.
    Zong, Z., Desai, S.D., Kaushal, A.M., Barich, D.H., Huang, H.S., Munson, E.J., Suryanarayanan, R., Kirsch, L.E.: The stabilizing effect of moisture on the solid-state degradation of gabapentin. AAPS Pharm. Sci. Tech. 12(3), 924–931 (2011). doi: 10.1208/s12249-011-9652-8 CrossRefGoogle Scholar
  93. 93.
    Szente, L., Szejtli, J. (eds.): Flavor Encapsulation. ACS Symposium Series. vol. 370, pp. 148–157. American Chemical Society, Hungary (1988). doi: 10.1021/bk-1988-0370.ch016 Google Scholar
  94. 94.
    Del Valle, M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  95. 95.
    Chittiteeranon, P., Soontarus, S., Pongsawasdi, P.: Preparation and characterization of inclusion complexes containing fixolide, a synthetic musk fragrance and cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 69–73 (2007)CrossRefGoogle Scholar
  96. 96.
    Jarho, P., Van der Velde, D., Stella, V.J.: Cyclodextrin-catalyzed deacetylation of spiranolactone is pH and cyclodextrin dependent. J. Pharm. Sci. 89, 241–249 (2000)CrossRefGoogle Scholar
  97. 97.
    Babu, J.R., Pandit, J.K.: Enhancement of dissolution rate and hypoglycemic activity of glibenclamide with β-cyclodextrin. STP Pharma. Sci. 5, 196–201 (1995)Google Scholar
  98. 98.
    Narisawa, S., Stella, V.J.: Increased shelf-life of fosphenytoin: Solubilization of a degradant, phenytoin, through complexation with (SBE) 7 m-beta-CD. J. Pharm. Sci. 87(8), 926–930 (1998)CrossRefGoogle Scholar
  99. 99.
    Yano, H., Hirayama, F., Kamada, M., Arima, H., Uekama, K.: Colon specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J. Control Release. 79, 103–112 (2002)CrossRefGoogle Scholar
  100. 100.
    Minami, K., Hirayama, F., Uekama, K.: Colon-specific drug delivery based on a cyclodextrin prodrug : release behavior of biphenyl acetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J. Pharm. Sci. 87(6), 715–720 (1998)CrossRefGoogle Scholar
  101. 101.
    Zou, M.J., Cheng, G., Okamoto, H., Hao, X.H., An, F., Cui, F.D., Danjo, K.: Colon-specific drug delivery systems based on cyclodextrin prodrugs: In vivo evaluation of 5-aminosalicylic acid from its cyclodextrin conjugates. World J. Gastroenterol. 11(47), 7457–7460 (2005). doi: 10.3748/wjg.v11.i47.7457 CrossRefGoogle Scholar
  102. 102.
    Jarvinen, T., Jarvinen, K., Urtti, A., Thompson, D., Stella, V.J.: Sulfobutyl ether β-cyclodextrin (SBE-β-CD) in eye drops improves the tolerability of a topically applied pilocarpine prodrug in rabbits. J. Ocular Pharmacol. Ther. 11, 95–106 (1995)CrossRefGoogle Scholar
  103. 103.
    Jarho, P., Jarvinen, K., Urtti, A., Stella, V.J., Jarvinen, T.: Modified β-cyclodextrin (SBE7-β-CD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J. Pharm. Pharmacol. 48, 263–269 (1996)CrossRefGoogle Scholar
  104. 104.
    Davies, N.M., Wang, G., Tucker, I.G.: Evaluation of a hydrocortisone/hydroxypropyl-β-cyclodextrin solution for ocular drug delivery. Int. J. Pharm. 156, 201–209 (1997)CrossRefGoogle Scholar
  105. 105.
    Tirucherai, G.S., Mitra, A.K.: Effect of hydroxypropyl beta-cyclodextrin complexion on aqueous solubility, stability and corneal permeation of acyl ester prodrugs of ganciclovir. AAPS PharmSciTech. 4(3), 124–135 (2003)CrossRefGoogle Scholar
  106. 106.
    Hermens, W.A.J.J., Deurloo, M.J.M., Romeijn, S.G., Verhoef, J.C., Merkus, F.W.H.M.: Nasal absorption enhancement of 17-β-oestradiol by dimethyl-β-cyclodextrin in rabbits and rats. Pharm. Res. 7, 500–503 (1990)CrossRefGoogle Scholar
  107. 107.
    Loftsson, T., Guomundsdottir, H., Sigurjonsdottir, J.F.., Sigurosson, H.H., Sigfusson, S.D., Masson, M., Stefannsson, E.: Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int. J. Pharm. 212, 29–40 (2001)CrossRefGoogle Scholar
  108. 108.
    Matsubara, K., Abe, K., Irie, T., Uekama, K.: Improvement of nasal bioavailability of luteinizing hormone-releasing hormone agonist, buserelin, by cyclodextrin derivatives in rats. J. Pharm. Sci. 84, 1295–1300 (1995)CrossRefGoogle Scholar
  109. 109.
    Lin, S.Z., Wouessidjewe, D., Poelman, M.C., Duchene, D.: In-vivo evaluation of indomethacin/ cyclodextrin complexes gastrointestinal tolerance and dermal anti-inflammatory activity. Int. J. Pharm. 106, 63–67 (1994)CrossRefGoogle Scholar
  110. 110.
    Loftsson, T., Sigurardottir, A.M.: The effect of polyvinyl pyrrolidone and hydroxypropyl methyl cellulose on hydroxypropyl-β-cyclodextrin complexation of hydrocortisone and its permeability through hairless mouse skin. Eur. J. Pharm. Sci. 2, 297–301 (1994)CrossRefGoogle Scholar
  111. 111.
    Loftsson, T., Fririksdottir, H., Thorisdottir, S., Stefansson, E.: The effect of hydroxypropyl methyl cellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations. Int. J. Pharm. 104, 181–184 (1994)CrossRefGoogle Scholar
  112. 112.
    Tiwari, G., Tiwari, R., Rai, A.K.: Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2(2), 72–79 (2010). doi: 10.4103/0975-7406.67003 CrossRefGoogle Scholar
  113. 113.
    Agrawal, R., Gupta, V.: Cyclodextrins-a review on pharmaceutical application for drug delivery. IJPER 2(1), 95–112 (2012)Google Scholar
  114. 114.
    Kang, K., Huang, W., Fu, Y., Chen, L., hu, J., Ren, Y.: Pyridine-incorporated cyclo[6]aramide for recognition of urea and its derivatives with two different binding modes. Supramol. Chem. (2011). doi: 10.1080/10610278.2017.1282614 Google Scholar
  115. 115.
    Lascaux, A., Leener, G.D., Fusaro, L., Topic, F., Rissanen, K., Luhmer, M., Jabin, I.: Selective recognition of neutral guests in an aqueous medium by a biomimetic calix[6]cryptamide receptor. Org. Biomol. Chem. 14, 738–746 (2016). doi: 10.1039/C5OB02067K CrossRefGoogle Scholar
  116. 116.
    Leener, G.D., Moerkerke, S., Lavendomme, R., Reinaud, O., Jab, I.: Calix[6]azacryptand-based receptors. In: Neri, P., Sessler, J.L., Wang, M.X. (eds.) Calixarenes and Beyond, pp. 113–140. Springer International Publishing, Switzerland (2016). doi: 10.1007/978-3-319-31867-7_6 CrossRefGoogle Scholar
  117. 117.
    Maria, D.S., Farran, M.A., Garcia, M.A., Pinilla, E., Torres, M.R., Elguero, J., Claramunt, R.M.: Synthetic hosts for molecular recognition of ureas. J. Org. Chem. 76(16), 6780–6788 (2011). doi: 10.1021/jo201191x CrossRefGoogle Scholar
  118. 118.
    Bengen, M.F.: Urea channel inclusion compounds. German Patent Application OZ123438 Mar 18 (1940)Google Scholar
  119. 119.
    Abu-Nasr, A.M., Potts, W.M., Holman, R.T.: Highly unsaturated fatty acids. II. Fractionation by urea inclusion compounds. J. Am. Oil Chemists Soc. 31, 16–20 (1954)CrossRefGoogle Scholar
  120. 120.
    Hayes, D.: Urea inclusion compound formation. Inform. 13, 781–801 (2002)Google Scholar
  121. 121.
    Schlenk, H., Holman, R.H.: Separation and stabilization of fatty acids by urea complexes. J. Am. Chem. Soc. 72, 5001–5004 (1950)CrossRefGoogle Scholar
  122. 122.
    Karr, C. Jr.: Separation process utilizing urea paraffin chromatography. United States Patent. 2,912,426 (1955)Google Scholar
  123. 123.
    Karr, C., Comberiati, J.R.: The analysis of straight-chain aliphatics by urea partition chromatography and gas-solid chromatography. J. Chromatog. 18, 394–397 (1965)CrossRefGoogle Scholar
  124. 124.
    Oswald, A.A., Chen, F.J., Espino, R.L., Peng, K.L.: Multistep process for the manufacture of novel polyolefin lubricants. United States Patent 5017279 (1991)Google Scholar
  125. 125.
    Gupta, A. A., Swamy, K. K., Prakash, S., Rai, M. M., Bhatnagar, A. K.: Process for recovery of solid and reusable urea from the urea adduction process. United States Patent 5847209 (1998)Google Scholar
  126. 126.
    Hollingsworth, M.D., Harris, K.D.M.: Urea inclusion compounds. In: Atwood, J.L. (ed.) Comprehensive Supramolecular Chemistry, Chapter 4, pp. 192–234. Interscience Pub., New York (1996)Google Scholar
  127. 127.
    Madan, A.K., Grover, P.D.: A process for preparation of urea based inclusion compounds of vitamin A esters. Indian Patent 180627 dated 20/01/1993 (1993)Google Scholar
  128. 128.
    Madan, A.K., Bajaj, V.: A process for preparation of urea based inclusion compounds of vitamin E and its esters. Indian Patent 182620 dated 24/10/ 1994 (1994)Google Scholar
  129. 129.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007). doi: 10.1016/j.addr.2007.05.012 CrossRefGoogle Scholar
  130. 130.
    Ueda, H., Wakamiya, T., Endo, H., Nagase, H., Tomono, K., Nagai, T.: Interaction of cyclomaltononaose (delta-CD) with several drugs. Drug Dev. Ind. Pharm. 25, 951–955 (1999)CrossRefGoogle Scholar
  131. 131.
    Szaniszlo, N., Fenyvesi, E., Balla, J.: Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils J. Incl. Phenom. Macrocycl. Chem. 53(3–4), 241–248 (2005). doi: 10.1007/s10847-005-0245-6 CrossRefGoogle Scholar
  132. 132.
    Szente, L., Fenyvesi, E.: Cyclodextrin-lipid complexes: cavity size matters. Struct. Chem. 28(2), 479–492 (2017)CrossRefGoogle Scholar
  133. 133.
    Sortino, S., Guiffrida, S., De Guldi, G.: The photochemistry of flutamide and its inclusion complex with beta-cyclodextrin: dramatic effect of microenvironment on the nature and on the efficiency of the photodegradation pathways. Photochem. Photobiol. 73, 6–13 (2001)CrossRefGoogle Scholar
  134. 134.
    Yonezawa, Y., Maruyama, S., Takagi, K.: Stability of inclusion complexes of cyclodextrins with Guaiazulene. Agri. Biol. Chem. 45(2), 505–506 (1981)Google Scholar
  135. 135.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1358 (1997). doi: 10.1021/cr960371r CrossRefGoogle Scholar
  136. 136.
    Thakral, S., Madan, A.K..: Reduction in moisture sensitivity/ uptake of moisture sensitive drugs through adduction in urea. J. Pharm. Innov. 3(4), 249–257 (2008). doi: 10.1007/s12247-008-9045-z CrossRefGoogle Scholar
  137. 137.
    Thakral, S., Madan, A.K.: Urea co-inclusion compounds of 13 cis-retinoic acid for simultaneous improvement of dissolution profile, photostability and safe handling characteristics. J. Pharm. Pharmacol. 60(7), 823–832 (2008)CrossRefGoogle Scholar
  138. 138.
    Budhwaar, V., Nanda, A.: Simultaneous improvement of dissolution rate and stability of ramipril by formation of urea inclusion complexes. Int. J. App. Pharm. 5(3), 19–25 (2013)Google Scholar
  139. 139.
    Mosher, G.: Complexation: cyclodextrins. In: Swarbrick, J. (ed.) Encyclopedia of Pharmaceutical Technology, vol. 2, pp. 671–696. Informa Health Care, New York (2007)Google Scholar
  140. 140.
    Stella, V.J., He, Q.: Cyclodextrins. Toxicol. Pathol. 36(1), 30–42 (2008)CrossRefGoogle Scholar
  141. 141.
    Reeder, R.F., Harbaugh, R.E.: Administration of intravenous urea and normal saline for the treatment of hyponatremia in neurosurgical patients. J. Neurosurg. 70(2), 201–206 (1989)CrossRefGoogle Scholar
  142. 142.
    Nelson, D.L., Cox, M.M. (eds.): Lehinger Principles of Biochemistry, 4th edn., pp. 656–688. WH Freeman and Company, New York (2005)Google Scholar
  143. 143.
    Clanton, D.C.: Non-protein nitrogen in range supplements. J. Anim. Sci. 47, 765–779 (1978)CrossRefGoogle Scholar
  144. 144.
    Woods, B.C.: Effect of inclusion of urea and supplement frequency on intake, digestion and performance of cattle consuming low quality, tallgrassprairie forage. MS Thesis, Manhattan: Kansas State University, (1997)Google Scholar
  145. 145.
    Dhall, M., Madan, A.K.: Conversion of viscous liquid malathion into free flowing solids through co-inclusion in urea for multiple benefits. J. Incl. Phenom. Macrocycl. Chem. 86(1–2), 135–151 (2016). doi: 10.1007/s10847-016-0648-6 CrossRefGoogle Scholar
  146. 146.
    Flaherty, R.J., Nshime, B., Delamarre, M., Dejong, S., Scott, P., Lantz, A.W.: Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere. 91(7), 912–920 (2013). doi: 10.1016/j.chemosphere.2013.02.005 CrossRefGoogle Scholar
  147. 147.
    Dodziuk, H., Hashimoto, H., Morillo, E., Bilewicz, R., Chmursky, K.: Applications other than pharmaceutical industry. In: H. Dodziuk (eds.) Cyclodextrins and their Complexes: Chemistry, Analytical Methods, Applications, pp. 459–465. Wiley, Weinheim (2006)CrossRefGoogle Scholar
  148. 148.
    Kanani-Al, T., Mackenzie, A.F., Barhakur, N.N.: Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions. Soil Sci. Soc. Am. J. 55, 1761–1766 (1991)CrossRefGoogle Scholar
  149. 149.
    Marsh, K.L., Sims, G.K., Mulvaney, R.L.: Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biol. Fert. Soil. 42, 137–145 (2005)CrossRefGoogle Scholar
  150. 150.
    Zhou, J., Ritter, H.: Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem. 1, 1552–1559 (2010). doi: 10.1039/C0PY00219D CrossRefGoogle Scholar
  151. 151.
    Hollingsworth, M.D., Zwanziger, U.W., Brown, M.E., Chaney, J.D., Huffman, J.C., Harris, K.D.M., Smart, S.P.: Spring-loading at the molecular level: relaxation of guest-induced strain in channel inclusion compounds. J. Am. Chem. Soc. 121(41), 9732–9733 (1999). doi: 10.1021/ja9919534 CrossRefGoogle Scholar
  152. 152.
    Shahgaldian, P., Pieles, U.: Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors (Basel) 6(6), 593–615 (2006)CrossRefGoogle Scholar
  153. 153.
    Harris, K.D.M.: Aperiodicity in organic materials. In: Harris, K.D.M., Edwards, P.P. (eds.) Turning point in Solid State Materials and Surface Science, Chapter 19, pp. 315–317. .RSC Publishing, Great Britain (2008)Google Scholar
  154. 154.
    Schlenk, W.: Asymmetric urea inclusion lattice. III Unstable configurational lattice coordination of guest molecules. Justus Liebigs Ann. Chem. 7, 1179–1194 (1973)CrossRefGoogle Scholar
  155. 155.
    Fernandes, C.M., Ramos, P., Falcao, A.C., Veiga, F.J.: Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation and bioavailability studies in rabbits. J. Control. Release. 88(1), 127–134 (2003)CrossRefGoogle Scholar
  156. 156.
    Sinha, V.R., Nanda, A., Kumaria, R.: Cyclodextrins as sustained-release carriers. Pharm. Technol. 44, 36–46 (2002)Google Scholar
  157. 157.
    Costa, M.M.E., Cabral-Albuquerque, E.C.M., Alves, T.L.M., Pinto, J.C., Fialho, R.L.: Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. Agric. Food Chem. 61(42), 9984–9991 (2013). doi: 10.1021/jf401185y CrossRefGoogle Scholar
  158. 158.
    Otey, F.H., Trimnell, D., Westhoff, R.P., Shasha, B.S.: Starch matrix for controlled release of urea fertilizer. J. Agric. Food Chem. 32(5), 1095–1098 (1984). doi: 10.1021/jf00125a041 CrossRefGoogle Scholar
  159. 159.
    Rouelle, H.: Observations on human urine and on that of the cow and horse, compared to each other. J. de Medecine, de Chirurgie et de Pharmacie. 40, 451–468 (1773)Google Scholar
  160. 160.
    Wohler, F.: Ueber einige Verbindungen aus der Chinonreihe (About some compounds from quinine series). Justus Liebigs Ann. Chem. 69(3), 294–300 (1849)CrossRefGoogle Scholar
  161. 161.
    Brusilow, S.W., Horwich, A.L.: Urea cycle enzymes. In: Scriver, C.R., Beaudet, A.C., Sly, W.S., Childs, B., Kinzler, K., Vogelstein, B. (eds.) The Metabolic Bases of Inherited Disease, 8th edn, pp. 1900–1963. McGraw-Hill Companies Inc., New York (2001)Google Scholar
  162. 162.
    INCHEM, International Chemical Safety Cards. ICSC: 0595. Urea. OECD Screening Information dataset. By International Program on Chemical safety (1997)Google Scholar
  163. 163.
    FAO/WHO. Evaluation of certain food additives and contaminants. Thirty-third report of the joint FAO/WHO expert committee on food additives (JECFA). World Health Organ Tech. Rep. Ser. No. 776. (1989)Google Scholar
  164. 164.
    Sekiguchi, K., Noboru, O.: Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9(11), 866–872 (1961)CrossRefGoogle Scholar
  165. 165.
    Habib, F.S., Attia, M.A.: Effect of particle size on the dissolution rate of monophenylbutazone solid dispersion in presence of certain additives. Drug Dev. Ind. Pharm. 11(11), 2009–2019 (1985)CrossRefGoogle Scholar
  166. 166.
    Modi, A., Tayade, P.: Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS Pharm. Sci. Tech. 7(3), (2006). doi: 10.1208/pt070368
  167. 167.
    Okonogi, S., Yonemochi, E., Oguchi, T., Puttipipatkhachorn, S., Samamoto, K.: Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 23, 1115–1121 (1997)CrossRefGoogle Scholar
  168. 168.
    Zavodnik, V., Stash, A., Tsirelson, V., Vries, R., Feil, D.: Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. Acta Cryst B. 55, 45–54 (1999)CrossRefGoogle Scholar
  169. 169.
    Smith, A.E.: The crystal structure of urea-hydrocarbon complexes. Acta Crystallogr. 5, 224–235 (1952)CrossRefGoogle Scholar
  170. 170.
    Thakral, S., Madan, A.K.: Topological models for prediction of adductability of branched aliphatic compounds in urea. J. Incl. Phenom. Macrocycl. Chem. 56, 405–412 (2006). doi: 10.1007/s10847-006-9123-0 CrossRefGoogle Scholar
  171. 171.
    Thakral, S., Madan, A.K.: Topological models for prediction of adductability of substituted cyclic organic compounds in urea. J. Incl. Phenom. Macrocycl. Chem. 58(3), 321–326 (2007). doi: 10.1007/s10847-006-9160-8 CrossRefGoogle Scholar
  172. 172.
    Fetterly, L.C.: Organic adducts. In: Mandelcorn, L. (ed.) Non-Stoichiometric Compounds, pp. 491–567. Academic Press, New York (1964)Google Scholar
  173. 173.
    Swern, D.: Urea and thiourea complexes in separating organic compounds. Ind. Eng. Chem. 47, 216–221 (1955)CrossRefGoogle Scholar
  174. 174.
    McAdie, H.D.: Thermal decomposition of molecular complexes. III Urea inclusion compounds of monosubstituted aliphatic series. Can. J. Chem. 41, 2144–2153 (1963)CrossRefGoogle Scholar
  175. 175.
    Zimmerschied, W.J., Dinerstein, R.A., Wietkamp, A.W., Marschner, R.F.: Crystalline adducts of urea with linear aliphatic compounds. Ind. Eng. Chem. 42, 1300–1306 (1950)CrossRefGoogle Scholar
  176. 176.
    Thakral, S., Madan, A.K.: Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J. Pharm. Pharmacol. 59(11), 1501–1507 (2007)CrossRefGoogle Scholar
  177. 177.
    Thakral, S., Madan, A.K.: Urea co-inclusion compounds of glipizide for the improvement of dissolution profile. J. Incl. Phenom. Macrocycl. Chem. 60(3), 203–209 (2008). doi: 10.1007/s10847-007-9368-2 CrossRefGoogle Scholar
  178. 178.
    Thakral, S., Madan, A.K.: Adduction of amiloride hydrochloride in urea through a modified technique for the dissolution enhancement. J. Pharm. Sci. 97(3), 1191–1201 (2008)CrossRefGoogle Scholar
  179. 179.
    Dhall, M., Madan, A.K.: Studies on urea co-inclusion complexes of simvastatin for improvement of pharmaceutical characteristics. J. Incl. Phenom. Macrocycl. Chem. 81(1–2), 105–120 (2015). doi: 10.1007/s10847-014-0439-x CrossRefGoogle Scholar
  180. 180.
    Dhall, M., Madan, A.K..: Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea. J. Incl. Phenom. Macrocycl. Chem. 82(3–4), 335–350 (2015). doi: 10.1007/s10847-015-0493-z CrossRefGoogle Scholar
  181. 181.
    Dhall, M., Madan, A.K.: Steep improvement in dissolution profile of ezetimbe through co-inclusion in urea. J. Pharm. Invest. 46(1), 1–19 (2016). doi: 10.1007/s40005-016-0236-1 CrossRefGoogle Scholar
  182. 182.
    Vinod Budhwaar V., Nanda, A.: Preparation and evaluation of urea co-inclusion complexes of Co-Q10 for the simultaneous enhancement of dissolution profile and its stability. Int. J. Chem.Pharm. Sci. 3(6), 1787–1794 (2015)Google Scholar
  183. 183.
    Thakral, S., Madan, A.K..: Topological models for prediction of heat of decomposition of urea inclusion compounds containing aliphatic endocytes. J. Incl. Phenom. Macrocycl. Chem. 60(1), 187–192 (2008). doi: 10.1007/s10847-007-9345-9 CrossRefGoogle Scholar
  184. 184.
    Thakral, S., Madan, A.K..: Topological models for the prediction of host: guest ratio of urea inclusion compounds. J. Incl. Phenom. Macro. Chem. 65(3–4), 411–417 (2009). doi: 10.1007/s10847-009-9583-0 CrossRefGoogle Scholar
  185. 185.
    Dhall, M., Madan, A.K.: Thermal and other analytical studies on bifenthrin urea co-inclusion complex—A human guarded insecticide formulation. J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-6072-8 (2017)Google Scholar
  186. 186.
    Dhall, M., Madan, A.K.: Preparation, characterization and evaluation of human guarded chlorpyrifos urea co-inclusion complexes. Indian J. Pharm. Sci. 79(1), 91–104 (2017)Google Scholar
  187. 187.
    Dhall, M., Madan, A.K.: Urea complexes of chlorpyrifos, malathion, bifenthrin and cypermethrin for improving safe handling and other characteristics. Indian Patent No. 201611002986 filed on 28 Jan (2016)Google Scholar
  188. 188.
    Bajaj, V., Madan, A.K.: Highly distorted urea based channel complexes as an alternative to solid dispersions for improving content uniformity and dissolution rate. Proceedings of the First Regional Conference of IEEE Engineering in Medicine & Biology Society and 14th Conference of the Biomedical Engineering Society of India—An International Meet, New Delhi, 4.67–4.68 (1995)Google Scholar
  189. 189.
    Thakral, S., Madan, A.K.: Improvement of dissolution profile of gliclazide through co-inclusion in urea. British Pharmaceutical Conference, Manchester, UK, 7–9th Sept (2008)Google Scholar
  190. 190.
    Dhall, M., Madan, A.K.: Studies on urea co-inclusion complexes of ebastine for steep improvement in dissolution profile. Indian Drugs. 54(8), 42–53 (2017) (In-press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesPt. B. D. Sharma University of Health SciencesRohtakIndia

Personalised recommendations