Skip to main content

Essential oil–cyclodextrin complexes: an updated review

Abstract

Cyclodextrins, degradation product of carbohydrates, have been extensively exploited by food, pharmaceutical and cosmetic industry by virtue of their ease of availability and their ability to entrap guest moieties. Various cyclodextrin derivatives have been granted generally recognized as safe (GRAS) status by several countries. The most noteworthy characteristic of cyclodextrins is their ability to form inclusion complexes with variety of molecules, imparting protection and enabling solubility, bioavailability and safety enhancement of challenging bioactives. In the last few decades, investigations have revealed anti-microbial, anti-inflammatory, insecticidal, analgesic and sedative properties of essential oils. However, their poor solubility, volatility and sensitivity to environmental factors pose challenge for the formulation scientists. Inclusion complexes of essential oils with cyclodextrins have proved a useful strategy to circumvent these challenges. The success of this approach for essential oils is examplified by the commercial garlic oil/β-cyclodextrin products, available under the trade names Xund, Tegra, Allidex and Garlessence. Here, we present an in-depth account of essential oil loaded cyclodextrin inclusion complexes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    CAS  Article  Google Scholar 

  2. Eastburn, S.D., Tao, B.Y.: Applications of modified cyclodextrins. Biotechnol. Adv. 12, 325–339 (1994)

    CAS  Article  Google Scholar 

  3. Loftsson, T., Masson, M.: Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm. 225, 15–30 (2001)

    CAS  Article  Google Scholar 

  4. Cal, K., Centkowska, K.: Use of cyclodextrins in topical formulations: practical aspects. Eur. J. Pharm. Biopharm. 68, 467–478 (2008)

    CAS  Article  Google Scholar 

  5. Osa, T., Suzuki, I., Szejtli, J., Osa, T.: Comprehensive supramolecular chemistry. Cyclodextrins 3, 367–400 (1996)

    CAS  Google Scholar 

  6. Del Valle, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  7. Szente, J.: Cyclodextrin in drug formulations: part I. Pharm. Technol. Int. 3, 15–23 (1991)

    Google Scholar 

  8. Fromming, K.H., Szejtli, J.: Cyclodextrins in Pharmacy, vol. 5. Springer, Dordrecht (1993)

    Google Scholar 

  9. Motoyama, K., Arima, H., Toyodome, H., Irie, T., Hirayama, F., Uekama, K.: Effect of 2,6-di-O-methyl-α-cyclodextrin on hemolysis and morphological change in rabbit’s red blood cells. Eur. J. Pharm. Sci. 29, 111–119 (2006)

    CAS  Article  Google Scholar 

  10. Szejtli, J., Liptak, A., Jodal, I., Fügedi, P., Nanasi, P., Neszmelyi, A.: Synthesis and 13C-NMR spectroscopy of methylated beta-cyclodextrins. Starch-Stärke 32, 165–169 (1980)

    CAS  Article  Google Scholar 

  11. Uekama, K.: Pharmaceutical applications of methylated cyclodextrins. Pharm. Int. 6, 61–65 (1985)

    CAS  Google Scholar 

  12. Hirose, T., Yamamoto, Y.: Hinokitol containing cyclo-olefin polymer compositions and their molding with excellent antimicrobial and gas barrier properties. Japanese Patent JP 55480 (2001)

  13. Hirayama, F., Uekama, K.: Methods of investigating and preparing inclusion compounds. ChemInform 21 (1990)

  14. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    CAS  Article  Google Scholar 

  15. Lezcano, M., Al-Soufi, W., Novo, M., Rodríguez-Núñez, E., Tato, J.V.: Complexation of several benzimidazole-type fungicides with α-and β-cyclodextrins. J. Agric. Food Chem. 50, 108 –112 (2002)

    CAS  Article  Google Scholar 

  16. Arockia Jency, D., Umadevi, M., Sathe, G.V.: SERS detection of polychlorinated biphenyls using β-cyclodextrin functionalized gold nanoparticles on agriculture land soil. J. Raman Spectrosc. 46, 377–383 (2015)

    CAS  Article  Google Scholar 

  17. Villalonga, R., Fernández, M., Fragoso, A., Cao, R., Mariniello, L., Porta, R.: Thermal stabilization of trypsin by enzymic modification with β-cyclodextrin derivatives. Biotechnol. Appl. Biochem. 38, 53–59 (2003)

    CAS  Article  Google Scholar 

  18. Hedges, A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    CAS  Article  Google Scholar 

  19. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137–142 (2004)

    CAS  Article  Google Scholar 

  20. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    CAS  Article  Google Scholar 

  21. Holland, L., Rizzi, G., Malton, P.: Cosmetic compositions comprising cyclic oligosaccharides and fragrance. PCT Int. Appl. WO 67, 716 (1999)

    Google Scholar 

  22. Bilia, A.R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., Bergonzi, M.C.: Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid. Based Complement. Altern. Med. 2014, 651593 (2014)

    Google Scholar 

  23. Pichersky, E., Noel, J.P., Dudareva, N.: Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311, 808–811 (2006)

    CAS  Article  Google Scholar 

  24. Franz, C.M.: Essential oil research: past, present and future. Flavour Frag. J. 25, 112–113 (2010)

    Article  Google Scholar 

  25. Hong, K., Park, S.: Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Mater. Chem. Phys. 58, 128–131 (1999)

    CAS  Article  Google Scholar 

  26. Bhandari, B.R., D’Arc, B.R., Thi Bich, L.L.: Lemon oil to β-cyclodextrin ratio effect on the inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. J. Agric. Food Chem. 46, 1494–1499 (1998)

    CAS  Article  Google Scholar 

  27. Bhandari, B.R., D’Arc, B.R., Padukka, I.: Encapsulation of lemon oil by paste method using β-cyclodextrin: encapsulation efficiency and profile of oil volatiles. J. Agric. Food Chem. 47, 5194–5197 (1999)

    CAS  Article  Google Scholar 

  28. Martins, A.D., Craveiro, A., Machado, M., Raffin, F., Moura, T., Novák, C., Éhen, Z.: Preparation and characterization of Mentha × villosa Hudson oil–β-cyclodextrin complex. J. Therm. Anal. Calorim. 88, 363–371 (2007)

    CAS  Article  Google Scholar 

  29. Ayala-Zavala, J.F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martin-Belloso, O., González-Aguilar, G.A.: Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60, 359–368 (2008)

    CAS  Article  Google Scholar 

  30. Choi, M.J., Ruktanonchai, U., Min, S.G., Chun, J.Y., Soottitantawat, A.: Physical characteristics of fish oil encapsulated by β-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food Chem. 119, 1694–1703 (2010)

    CAS  Article  Google Scholar 

  31. Seo, E.J., Min, S.G., Choi, M.J.: Release characteristics of freeze-dried eugenol encapsulated with β-cyclodextrin by molecular inclusion method. J. Microencapsul. 27, 496–505 (2010)

    CAS  Article  Google Scholar 

  32. Petrović, G.M., Stojanović, G.S., Radulović, N.S.: Encapsulation of cinnamon oil in b-cyclodextrin. J. Med. Plants Res. 4, 1382–1390 (2013)

    Google Scholar 

  33. Ciobanu, A., Mallard, I., Landy, D., Brabie, G., Nistor, D., Fourmentin, S.: Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr. Polym. 87, 1963–1970 (2012)

    CAS  Article  Google Scholar 

  34. Ciobanu, A., Landy, D., Fourmentin, S.: Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 53, 110–114 (2013)

    CAS  Article  Google Scholar 

  35. Menezes, P.P., Serafini, M.R., Quintans-Júnior, L.J., Silva, G.F., Oliveira, J.F., Carvalho, F.M., Souza, J.C., Matos, J.R., Alves, P.B., Matos, I.L., Hădărugă, D.I.: Inclusion complex of (–)-linalool and β-cyclodextrin. J. Therm. Anal. Calorim. 115, 2429–2437 (2014)

    CAS  Article  Google Scholar 

  36. Zhu, G., Xiao, Z., Zhou, R., Zhu, Y.: Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohydr. Polym. 105, 75–80 (2014)

    CAS  Article  Google Scholar 

  37. Kfoury, M., Auezova, L., Ruellan, S., Greige-Gerges, H., Fourmentin, S.: Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym. 118, 156–164 (2015)

    CAS  Article  Google Scholar 

  38. Szejtli, J., Szente, L., Banky-Elod, E.: Molecular encapsulation of volatile., easily oxidizable labile flavoljr substances by cyclodexrins. Acta Chim. Acad. Sci. Hung. 101, 27–46 (1979)

    CAS  Google Scholar 

  39. Padukka, I., Bhandari, B., D’Arcy, B.: Evaluation of various extraction methods of encapsulated oil from β-cyclodextrin-lemon oil complex powder. J. Food Comp. Anal. 13, 59–70 (2000)

    CAS  Article  Google Scholar 

  40. Yuliani, S., Torley, P.J., D’Arcy, B., Nicholson, T., Bhandari, B.: Extrusion of mixtures of starch and d-limonene encapsulated with β-cyclodextrin: flavour retention and physical properties. Food Res. Int. 39, 318–331 (2006)

    CAS  Article  Google Scholar 

  41. Hadaruga, D.I., Hadaruga, N.G., Rivis, A., Gruia, A., Pinzaru, I.A.: Thermal and oxidative stability of the Allium sativum L. bioactive compounds/alpha-and beta-cyclodextrin nanoparticles. Rev. Chim. 58, 1009–1015 (2007)

    CAS  Google Scholar 

  42. Tian, X.N., Jiang, Z.T., Li, R.: Inclusion interactions and molecular microcapsule of Salvia sclarea L. essential oil with β-cyclodextrin derivatives. Eur. Food Res. Technol. 227, 1001 (2008)

    CAS  Article  Google Scholar 

  43. Yadav, V.R., Suresh, S., Devi, K., Yadav, S.: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 10, 752 (2009)

    CAS  Article  Google Scholar 

  44. Wang, Y., Jiang, Z.T., Li, R.: Complexation and molecular microcapsules of Litsea cubeba essential oil with β-cyclodextrin and its derivatives. Eur. Food Res. Technol. 228, 865–873 (2009)

    CAS  Article  Google Scholar 

  45. Anuj, G., Bhavna, G., Rajiv, P., Sanjay, S.: Preparation and characterization of hydroxypropyl-β-cyclodextrin inclusion complex of eugenol: differential pulse voltammetry and 1H-NMR. Chem. Pharm. Bull. 58, 1313–1319 (2010)

    Article  Google Scholar 

  46. Chun, J.Y., You, S.K., Lee, M.Y., Choi, M.J., Min, S.G.: Characterization of β-cyclodextrin self-aggregates for eugenol encapsulation. Int. J. Food Eng. 8, 17 (2012)

    Google Scholar 

  47. Liu, H., Yang, G., Tang, Y., Cao, D., Qi, T., Qi, Y., Fan, G.: Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int. J. Pharm. 450, 304–310 (2013)

    Article  Google Scholar 

  48. Xi, J., Qian, D., Duan, J., Liu, P., Zhu, Z., Guo, J., Zhang, Y., Pan, Y.: Preparation, characterization and pharmacokinetic study of Xiangfu Siwu decoction essential oil/β-cyclodextrin inclusion complex. Molecules 20, 10705–10720 (2015)

    CAS  Article  Google Scholar 

  49. Haiyee, Z.A., Yahya, N.I., Rashid, N.A., Hashim, D.M.: Characterisation of catfish (Clarias batrachus) oil: β-cyclodextrin inclusion complex. Malays. J. Anal. Sci. 20, 838–843 (2016)

    Article  Google Scholar 

  50. Jiang, Z.T., Tan, J., Tan, J., Li, R.: Chemical components and molecular microcapsules of Folium Artemisia argyi essential oil with β-cyclodextrin derivatives. J. Essent. Oil Bear. Plants 19, 1155–1169 (2016)

    CAS  Article  Google Scholar 

  51. Usai, M., Atzei, A., Pintore, G., Casanova, I.: Composition and variability of the essential oil of Sardinian Thymus herba-barona Loisel. Flavour Frag. J. 18, 21–25 (2003)

    CAS  Article  Google Scholar 

  52. Del Toro-Sánchez, C.L., Ayala-Zavala, J.F., Machi, L., Santacruz, H., Villegas-Ochoa, M.A., Alvarez-Parrilla, E., González-Aguilar, G.A.: Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J. Incl. Phenom. Macrocycl. Chem. 67, 431–441 (2010)

    Article  Google Scholar 

  53. Songkro, S., Hayook, N., Jaisawang, J., Maneenuan, D., Chuchome, T., Kaewnopparat, N.: Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem. 72, 339–355 (2012)

    CAS  Article  Google Scholar 

  54. Menezes, P.P., Serafini, M.R., Santana, B.V., Nunes, R.S., Quintans, L.J., Silva, G.F., Medeiros, I.A., Marchioro, M., Fraga, B.P., Santos, M.R., Araújo, A.A.: Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 548, 45–50 (2012)

    CAS  Article  Google Scholar 

  55. Quintans-Júnior, L.J., Barreto, R.S., Menezes, P.P., Almeida, J.R., Viana, A.F., Oliveira, R., Oliveira, A.P., Gelain, D.P., Lucca Júnior, W., Araújo, A.A.: β-Cyclodextrin-complexed (–)-linalool produces antinociceptive effect superior to that of (–)-linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol. 113, 167–172 (2013)

    Article  Google Scholar 

  56. Nerome, H., Machmudah, S., Fukuzato, R., Higashiura, T., Youn, Y.S., Lee, Y.W., Goto, M.: Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluids 83, 97–103 (2013)

    CAS  Article  Google Scholar 

  57. Siqueira-Lima, P.S., Araújo, A.A., Lucchese, A.M., Quintans, J.S., Menezes, P.P., Alves, P.B., Lucca Júnior, W., Santos, M.R., Bonjardim, L.R., Quintans-Júnior, L.J.: β-Cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice–evidence of possible involvement of descending inhibitory pain modulation pathway. Basic Clin. Pharmacol. Toxicol. 114, 188–196 (2014),

    CAS  Article  Google Scholar 

  58. Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., Manfredini, S.: Encapsulation of Satureja montana essential oil in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 80, 147–153 (2014)

    CAS  Article  Google Scholar 

  59. Tao, F., Hill, L.E., Peng, Y., Gomes, C.L.: Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT-Food Sci. Technol. 59, 247–255 (2014)

    Article  Google Scholar 

  60. Dima, C., Cotarlet, M., Tiberius, B., Bahrim, G., Alexe, P., Dima, S.: Encapsulation of coriander essential oil in beta-cyclodextrin: antioxidant and antimicrobial properties evaluation. Rom. Biotech. Lett. 19, 9128–9141 (2014)

    Google Scholar 

  61. Guimarães, A.G., Oliveira, M.A., dos Santos Alves, R., dos Passos Menezes, P., Serafini, M.R., de Souza Araújo, A.A., Bezerra, D.P., Júnior, L.J.: Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact. 227, 69–76 (2015)

    Article  Google Scholar 

  62. Delogu, G., Juliano, C.C., Usai, M.: Thymus catharinae Camarda essential oil: β-cyclodextrin inclusion complexes, evaluation of antimicrobial activity. Nat. Prod. Res. 30, 2049–2057 (2016)

    CAS  Article  Google Scholar 

  63. da Silva, F.V., de Barros Fernandes, H., Oliveira, I.S., Viana, A.F., da Costa, D.S., Lopes, M.T., de Lira, K.L., Quintans-Júnior, L.J., de Sousa, A.A., Oliveira, R.D.: Beta-cyclodextrin enhanced gastroprotective effect of (−)-linalool, a monoterpene present in rosewood essential oil, in gastric lesion models. Naunyn-Schmiedebergs Arch. Pharmacol. 389, 1245–1251 (2016)

    Article  Google Scholar 

  64. Santos, P.L., Brito, R.G., Oliveira, M.A., Quintans, J.S., Guimaraes, A.G., Santos, M.R., Menezes, P.P., Serafini, M.R., Menezes, I.R., Coutinho, H.D., Araujo, A.A.: Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. Phytomedicine 23, 948–957 (2016)

    CAS  Article  Google Scholar 

  65. Marques, H.M.: A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Frag. J. 25, 313–326 (2010)

    Article  Google Scholar 

  66. Fernandes, L.P., Éhen, Z., Moura, T.F., Novák, C., Sztatisz, J.: Characterization of Lippia sidoides oil extract-b-cyclodextrin complexes using combined thermoanalytical techniques. J. Therm. Anal. Calorim. 78, 557–573 (2004)

    CAS  Article  Google Scholar 

  67. Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354–1366 (2004)

    CAS  Article  Google Scholar 

  68. Wang, J., Cao, Y., Sun, B., Wang, C.: Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127, 1680–1685 (2011)

    CAS  Article  Google Scholar 

  69. Rakmai, J., Cheirsilp, B., Torrado-Agrasar, A., Simal-Gándara, J., Mejuto, J.C.: Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CyTA J. Food. 1–9 (2017)

  70. Mulinacci, N., Melani, F., Vincieri, F.F., Mazzi, G., Romani, A.: 1 H-NMR NOE and molecular modelling to characterize thymol and carvacrol β-cyclodextrin complexes. Int. J. Pharm. 128, 81–88 (1996)

    CAS  Article  Google Scholar 

  71. Loftsson, T., Jarho, P., Masson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Delivery 2, 335–351 (2005)

    CAS  Article  Google Scholar 

  72. Guo, Q.X., Liu, L., Cai, W.S., Jiang, Y., Liu, Y.C.: Driving force prediction for inclusion complexation of α-cyclodextrin with benzene derivatives by a wavelet neural network. Chem. Phys. Lett. 290, 514–518 (1998)

    CAS  Article  Google Scholar 

  73. Waleczek, K.J., Marques, H.C., Hempel, B., Schmidt, P.C.: Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur. J. Pharm. Biopharm. 55, 247–251 (2003)

    CAS  Article  Google Scholar 

  74. Partanen, R., Ahro, M., Hakala, M., Kallio, H., Forssell, P.: Microencapsulation of caraway extract in ß-cyclodextrin and modified starches. Eur. Food Res. Technol. 214, 242–247 (2002)

    CAS  Article  Google Scholar 

  75. Alongi, J., Pošković, M., Frache, A., Trotta, F.: Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym. Degrad. Stab. 95, 2093–2100 (2010)

    CAS  Article  Google Scholar 

  76. Suryanarayanan, R.: X-ray powder diffractometry. In: Physical Characterization of Pharmaceutical Solids, pp. 187–221. CRC Press, Boca Raton (1995)

    Chapter  Google Scholar 

  77. Szejtli, J.: Cyclodextrins and Their Inclusion Complexes. Akadaemiai Kiadao, Budapest (1982)

    Google Scholar 

  78. Szejtli, J.: Molecular entrapment and release properties of drugs by cyclodextrins. Control. Drug Bioavailab. 3, 365–420 (1985)

    CAS  Google Scholar 

  79. Ren, J., Hong, H., Song, J., Ren, T.: Particle size and distribution of biodegradable poly-D, L-lactide-co-poly (ethylene glycol) block polymer nanoparticles prepared by nanoprecipitation. J. Appl. Polym. Sci. 98, 1884–1890 (2005)

    CAS  Article  Google Scholar 

  80. Srinivasan, K., Sivakumar, K., Stalin, T.: 2,6-Dinitroaniline and β-cyclodextrin inclusion complex properties studied by different analytical methods. Carbohydr. Polym. 113, 577–587 (2014)

    CAS  Article  Google Scholar 

  81. Santander-Ortega, M.J., Jódar-Reyes, A.B., Csaba, N., Bastos-González, D., Ortega-Vinuesa, J.L.: Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. Adv. Colloid Interface Sci. 302, 522–529 (2006)

    CAS  Article  Google Scholar 

  82. Hădărugă, D.I., Hădărugă, N.G., Bandur, G.N., Isengard, H.D.: Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem. 132, 1651–1659 (2012)

    Article  Google Scholar 

  83. Simovic, S., Prestidge, C.A.: Hydrophilic silica nanoparticles at the PDMS droplet – water interface. Langmuir 19, 3785–3792 (2003)

    CAS  Article  Google Scholar 

  84. Ishikawa, Y., Katoh, Y., Ohshima, H.: Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration. Colloids Surf. B 42, 53–58 (2005)

    CAS  Article  Google Scholar 

  85. Bilati, U., Allémann, E., Doelker, E.: Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 24, 67–75 (2005)

    CAS  Article  Google Scholar 

  86. Hill, L.E., Gomes, C., Taylor, T.M.: Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci. Technol. 51, 86–93 (2013)

    CAS  Article  Google Scholar 

  87. Thakkar, A.L., Demarco, P.V.: Cycloheptaamylose inclusion complexes of barbiturates: correlation between proton magnetic resonance and solubility studies. J. Pharm. Sci. 60, 652–653 (1971)

    CAS  Article  Google Scholar 

  88. Ueda, H., Nagai, T.: Nuclear magnetic resonance (NMR) spectroscopy of inclusion compounds of tolbutamide and chlorpropamide with β-Cyclodextrin in aqueous solution. Chem. Pharm. Bull. 28, 1415–1421 (1980)

    CAS  Article  Google Scholar 

  89. Tejashri, G., Amrita, B., Darshana, J.: Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta. Pharm. 63, 335–358 (2013)

    CAS  Article  Google Scholar 

  90. Inc, CTC: http://www.cyclodex.com/index.html. 5 May 2017

  91. Szejtli, J.: In: Smolen, V.F., Ball, L.A. (eds.) Controlled Drug Bioavailability, vol. 3, pp. 365–420. Wiley, New York (1985)

    Google Scholar 

  92. Mohan, P.K., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R.: Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77–84 (2012)

    CAS  Article  Google Scholar 

  93. Watson, D.G.: Pharmaceutical Analysis: a Textbook for Pharmacy and Pharmaceutical Chemists. Elsevier, Edinburgh (2012)

    Google Scholar 

  94. Paliyath, G., Pessoa, F.L., Sidhu, J.S., Sinha, N., Stanfield, P.: Handbook of Fruit and Vegetable Flavors. Wiley, Hoboken (2010)

    Google Scholar 

  95. Letizia, C.S., Cocchiara, J., Lalko, J., Api, A.M.: Fragrance material review on linalool. Food Chem. Toxicol. 41, 943–964 (2003)

    CAS  Article  Google Scholar 

  96. Hedges, A.R., Shieh, W.J., Sikorski, C.T.: Use of cyclodextrins for encapsulation in the use and treatment of food products. Encapsulation and controlled release of food ingredients, vol. 590. ACS Symposium Series, pp. 60–71 (1995)

  97. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6, E329-57 (2005)

    Article  Google Scholar 

  98. Cevallos, P.A., Buera, M.P., Elizalde, B.E.: Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J. Food Eng. 99, 70–75 (2010)

    CAS  Article  Google Scholar 

  99. Sköld, M., Karlberg, A.T., Matura, M., Börje, A.: The fragrance chemical β-caryophyllene—air oxidation and skin sensitization. Food Chem. Toxicol. 44, 538–545 (2006)

    Article  Google Scholar 

  100. Amidon, G.L., Lennernäs, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995)

    CAS  Article  Google Scholar 

  101. Karlberg, A.T., Magnusson, K., Nilsson, U.: Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Dermat. 26, 332–340 (1992)

    CAS  Article  Google Scholar 

  102. Matura, M., Sköld, M., Börje, A., Andersen, K.E., Bruze, M., Frosch, P., Goossens, A., Johansen, J.D., Svedman, C., White, I.R., Karlberg, A.T.: Selected oxidized fragrance terpenes are common contact allergens. Contact Dermat. 52, 320–328 (2005)

    CAS  Article  Google Scholar 

  103. Matura, M., Sköld, M., Börje, A., Andersen, K.E., Bruze, M., Frosch, P., Goossens, A., Johansen, J.D., Svedman, C., White, I.R., Karlberg, A.T.: Not only oxidized R-(+)-but also S-(−)-limonene is a common cause of contact allergy in dermatitis patients in Europe. Contact Dermat. 55, 274–279 (2006)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Rao.

Ethics declarations

Conflict of interest

All of the authors have no conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, G., Kumar, S., Chhabra, L. et al. Essential oil–cyclodextrin complexes: an updated review. J Incl Phenom Macrocycl Chem 89, 39–58 (2017). https://doi.org/10.1007/s10847-017-0744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0744-2

Keywords

  • Solubility enhancement
  • Kneading
  • Co-precipitation
  • Food
  • Cosmetic and pharmaceuticals