Skip to main content
Log in

Effect of pH and α-, β- and γ-cyclodextrin on the spectral properties of etoricoxib: spectroscopic and molecular dynamics study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The spectral properties of etoricoxib (ETR) at pH 2.0, 6.0 and 10.0 in the presence of cyclodextrins (CDs) were investigated. The absorption spectrum of ETR in acidic medium exhibited two bands centered at 236 and 273 nm, while in basic medium it exhibited two bands centered at 236 and 285 nm. No change in the spectrum was observed in the presence of CDs. The fluorescence emission spectra of ETR in acidic and basic media exhibited one band at 380 nm and another one at 484 nm. The emission band at 484 nm was enhanced when ETR was complexed with β-CD and γ-CD at pH 2.0, 6.0 and 10.0, while the band at 380 nm was enhanced selectively when ETR was complexed with α-CD at pH 2.0. Molecular dynamics simulations computations revealed that at pH 2.0, the sulfonyl moiety of H2ETR2+ is preferentially included within the α-CD cavity, which is believed to cause the enhancement of the band at 380 nm. Moreover, at pH 6.0 and 10.0, the enhancement of the band at 484 nm was related to the inclusion of the chloropyridinyl and methylpyridinyl groups of the bipyridine moiety of HETR+ and ETR within β-CD and γ-CD cavities. Benesi–Hildebrand analysis showed that the ETR/β-CD complex adopts a 1:1 stoichiometry with association constant of K 11 = 64.8 at pH 2.0, K 11 = 105.4 at pH 6.0 and K 11 = 520.5 at pH 10.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brooks, P., Kubler, P.: Etoricoxib for arthritis and pain management. Ther. Clin. Risk Manag. 2(1), 45–57 (2006)

    CAS  Google Scholar 

  2. Dallob, A., Hawkey, C.J., Greenberg, H., Wight, N., De Schepper, P., Waldman, S., Wong, P., DeTora, L., Gertz, B., Agrawal, N., Wagner, J., Gottesdiener, K: Characterization of etoricoxib, a novel, selective COX-2 inhibitor. J. Clin. Pharmacol. 43, 573–585 (2003)

    Article  CAS  Google Scholar 

  3. Lima-Rodrigues, M., Lamas, N., Valle-Fernandes, A., Cruz, A., Vieira, A., Oliveira, P., Pedrosa, J., Castro, A.G., Reis, R.M., Baltazar, F., Almeida, A.: The selective COX-2 inhibitor Etoricoxib reduces acute inflammatory markers in a model of neurogenic laryngitis but loses its efficacy with prolonged treatment. Inflamm. Res. 59, 743–753 (2010)

    Article  CAS  Google Scholar 

  4. Lin, H.Y., Cheng, T.T., Wang, J.H., Lee, C.S., Chen, M.H., Lei, V., Lac, C., Gammaitoni, A.R., Smugar, S.S., Chen, W.J.: Etoricoxib improves pain, function and quality of life: results of a real-world effectiveness trial. Int. J. Rheum. Dis. 13, 144–150 (2010)

    Article  Google Scholar 

  5. Zhang, S., Zhang, Y., Liu, P., Zhang, W., Ma, J., Wang, J.: Efficacy and safety of etoricoxib compared with NSAIDs in acute gout: a systematic review and a meta-analysis. Clin. Rheumatol. 35, 151–158 (2016)

    Article  CAS  Google Scholar 

  6. Bressan, E., Tonussi, C.R.: Antiinflammatory effects of etoricoxib alone and combined with NSAIDs in LPS-induced reactive arthritis. Inflamm. Res. 57, 586–592 (2008)

    Article  CAS  Google Scholar 

  7. Okumu, A., DiMaso, M., Löbenberg, R.: Computer simulations using GastroPlus™ to justify a biowaiver for etoricoxib solid oral drug products. Eur. J. Pharm. Biopharm. 72, 91–98 (2009)

    Article  CAS  Google Scholar 

  8. Shah, M., Karekar, P., Sancheti, P., Vyas, V., Pore, Y.: Effect of PVP K30 and/or l-arginine on stability constant of etoricoxib–HPβCD inclusion complex: preparation and characterization of etoricoxib–HPβCD binary system. Drug Dev. Ind. Pharm. 35, 118–129 (2009)

    Article  CAS  Google Scholar 

  9. Singh, I., Kumar, P., Pahuja, S., Tung, V., Arora, S.: Development and pharmaceutical evaluation of cyclodextrin complexes of etoricoxib. Acta Pol. Pharm. 68(2), 279–284 (2011)

    CAS  Google Scholar 

  10. Brewster, M. E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  11. Abdoh, A.A., El-Barghouthi, M.I., Zughul, M.B., Badwan, A.A.: Changes in conformational structure, microscopic and macroscopic pkas of meloxicam on complexation with natural and modified cyclodextrins. Pharmazie. 62, 55–59 (2007)

    CAS  Google Scholar 

  12. Al Omari, M.M., El-Barghouthi, M.I., Zughul, M.B., Davies, J.D.E., Badwan, A.A.: Comparative study of the inclusion complexation of pizotifen and ketotifen with native and hydroxypropyl β-cyclodextrins. J. Solution Chem. 37, 249–264 (2008)

    Article  CAS  Google Scholar 

  13. Stalin, T., Rajendiran, N.: Effects of solvent, pH and β-cyclodextrin on the photophysical properties of 4-hydroxy-3,5-dimethoxybenzaldehyde: intramolecular charge transfer associated with hydrogen bonding effect. Spectrochim. Acta A 61, 3087–3096 (2005)

    Article  CAS  Google Scholar 

  14. Cox, G.S., Turro, N.J.: Intramolecular exciplex emission from aqueous. Beta-cyclodextrin solutions. J. Am. Chem. Soc. 106, 422–424 (1984)

    Article  CAS  Google Scholar 

  15. Mittapalli, S., Bolla, G., Perumalla, S., Nangia, A.: Can we exchange water in a hydrate structure: a case study of etoricoxib. CrystEngComm 18, 2825–2829 (2016)

    Article  CAS  Google Scholar 

  16. Puliti, R., Mattia, C.A., Paduano, L.: Crystal structure of a new alpha-cyclodextrin hydrate form. Molecular geometry and packing features: disordered solvent contribution. Carbohydr. Res. 310, 1–8 (1998)

    Article  CAS  Google Scholar 

  17. Linder, K., Saenger, W.: Crystal and molecular-structure of cyclohepta-amylose dodecahydrate. Carbohydr. Res. 99, 103–115 (1982)

    Article  Google Scholar 

  18. Harata, K.: The structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull. Chem. Soc. Jpn. 60, 2763–2767 (1987)

    Article  CAS  Google Scholar 

  19. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multi- threading. J. Comput. Chem. 31, 455–461 (2010)

    CAS  Google Scholar 

  20. Case, D.A., Darden, T.A., Cheatham, T.E. III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossvary, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: Amber 11. University of California, San Francisco (2010)

    Google Scholar 

  21. Kirschner, K.N., Yongye, A.B., Tschampel, S.M., González-Outeiriño, J., Daniels, C.R., Foley, B.L., Woods, R.J.: GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 29, 622–655 (2008)

    Article  CAS  Google Scholar 

  22. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  23. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 26, 114 (2005)

    Article  CAS  Google Scholar 

  24. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montagomery, J., Verven, J.R., Kudin, K., Burant, J., Millam, J.M., Iyenger, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Naka- jima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Konx, J., Hratchian, H., Cross, J., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P., Moromuka, K., V oth, G., Salvador, P., Dannenberg, J., Zakrzewski, V., Dapprich, S., Daniels, A., Strain, M., Farkas, O., Malick, D., Rabuck, A., Raghavachari, K., Foresman, J., Ortiz, J., Cui, Q., Baboul, A., Clifford, S., Cioslwski, J., Setvanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Marton, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Gonzalez, C., Pople, J.: Gaussian 03, revision D.01. Gaussian, Inc., Wallingford, CT (2004)

    Google Scholar 

  25. Bayly, C., Cieplak, P., Cornell, W., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993)

    Article  CAS  Google Scholar 

  26. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  27. York, D.M., Darden, T.A., Pedersen, L.G.: The effect of long-range electrostatic interactions in simulations of macromolecular crytals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99(10), 8345–8348 (1993)

    Article  CAS  Google Scholar 

  28. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  29. Malhis, L.D., Bodoor, K., Assaf, K.I., Al-Sakhen, N., El-Barghouthi, M.I.: Molecular dynamics simulation of a cucurbituril based molecular switch triggered by pH changes. Comput. Theor. Chem. 1066, 104–112 (2015)

    Article  CAS  Google Scholar 

  30. Matthews, C.Z., Subramanian, R., Woolf, E. J., Foster, N., Matuszewski, B.K.: Isolation and structural characterization of the photolysis products of Etoricoxib. Pharmazie. 59, 913–919 (2004)

    CAS  Google Scholar 

  31. Hotchandani, S., Testa, A.C.: Luminescence study of 4-phenylpyridine. J. Photochem. Photobiol. A 55, 323–328 (1991)

    Article  CAS  Google Scholar 

  32. Kubin, J., Testa, A.C.: Excited state protonation of phenylpyridines. J. Photochem. Photobiol. A 83, 91–96 (1994)

    Article  CAS  Google Scholar 

  33. Nazarov, V.B., Avakyan, V.G., Gromov, S.P., Fomina, M.V., Vershinnikova, T.G., Alfimov, M.V.: Spectral properties and structures of supramolecular complexes of naphthylpyridine with β-cyclodextrin. Russ. Chem. Bull. 53(11), 2525–2531 (2004)

    Article  CAS  Google Scholar 

  34. Spencer, J.N., He, Q., Ke, X., Wu, Z., Fetter, E.: Complexation of inorganic anions and small organic molecules with alpha-cyclodextrin in water. J. Solution Chem. 27(11), 1009–1019 (1998)

    Article  CAS  Google Scholar 

  35. Barrientos, L., Lang, E., Zapata-Torres, G., Celis-Barros, C., Orellana, C., Jara, P., Yutronic, N.: Structural elucidation of supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes. J. Mol. Model. 19, 2119–2126 (2013)

    Article  CAS  Google Scholar 

  36. Schneiderman, E., Stalcup, A.M.: Binary and ternary complexes between lauryl hexaoxyethylene, benzoate and cyclodextrin. Part I. α-CD. J. Incl. Phenom. Macrocycl. Chem. 43, 37–42 (2002)

    Article  CAS  Google Scholar 

  37. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  38. Velasco, J., Guardado, P., Carmona, C., Munoz, M.A., Balon, M.: Guest-host interactions between tetrahydrobetacarboline and β-cyclodextrin. J. Chem. Soc. Faraday Trans. 94(10), 1469–1476 (1998)

    Article  CAS  Google Scholar 

  39. Rekharsky, M.V., Goldberg, R.N., Schwarz, F.B., Tewari, Y.B., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 117, 8830–8840 (1995)

    Article  CAS  Google Scholar 

  40. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deanship of Scientific Research at Al Al-Bayt University for the financial support to perform this project. The authors also thank Pharma International Co.—Jordan for providing the etoricoxib sample as a gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhri O. Yousef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, F.O., Ghanem, R., Alshraa, N.H. et al. Effect of pH and α-, β- and γ-cyclodextrin on the spectral properties of etoricoxib: spectroscopic and molecular dynamics study. J Incl Phenom Macrocycl Chem 88, 171–180 (2017). https://doi.org/10.1007/s10847-017-0715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0715-7

Keywords

Navigation