Skip to main content
Log in

Determination of tyrosine using p-sulfonated calix[n]arene modified electrode

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry was used to detect p-sulfonated calix[n]arenas (SCnA) how to immobilize on gold surface. P-sulfonated calix[n]arenes not only increased the specific surface area of the modified electrode, but also improved the enrichment ability of tyrosine. This led to a significant increase in peak current, and improved the sensitivity of tyrosine determination on the p-sulfonated calix[n]arenes-modified electrode. The modified electrode showed good catalytic ability of l-tyrosine oxidation reaction. The peak current of l-tyrosine increased and the oxidation peak potential shifted negatively with cavity size of the SCnA-modified electrode, which indicated that the catalytic ability of the modified electrode to l-tyrosine oxidation reaction was also enhanced. For the tyrosine guest molecule, the order of electrochemical activity and magnitude of catalytic ability of the oxidation reaction of the three modified gold electrodes was as follows: SC4A > SC6A > SC8A. The electrode had high selectivity and stability for the determination of tyrosine, with a wide linear range, low detection limit and high sensitivity at different concentrations under different pH values. This resulted in an accurate, fast, sensitive electrochemical method for the determination of tyrosine. The sensor was used for the determination of tyrosine in human urine with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leon, L.J., Pratt, C.C., Vasquez, L.J., Weers, P.M.: Tyrosine fluorescence analysis of apolipophorin III-lipopolysaccharide interaction. Arch Biochem Biophys. 1, 38–45 (2006)

    Article  Google Scholar 

  2. Gao, X.Y., Zhang, K.G., Kong, X.X., You, X.X.: Determination of tryptophan and tyrosine in four edible wild plants by molecular fluorescence spectrometry. Food Sci. 33, 231–234 (2012)

    CAS  Google Scholar 

  3. Gleason, N.J., Vostrikov, V.V., Greathouse, D.V., Grant, C.V., Opella, S.J., Koeppe, R.E.: Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry 51, 2044–2053 (2012)

    Article  CAS  Google Scholar 

  4. Gao, C.Y., Fan, S.H.: Determination of tyrosine and tryptophan by sequential injection analysis and chemiluminescence detection. Anal. Lett. 47, 178–189 (2014)

    Article  CAS  Google Scholar 

  5. Sayed, Y.K.: Quenching effect of l-tyrosine on peroxyoxalate chemiluminescence of berberine as the fluorophore. J. Iran. Chem. Soc. 10, 915–920 (2013)

    Article  Google Scholar 

  6. Letellier, S., Garnier, J.P., Spy, J.: Determination oft he DOPA/l-tyrosine ratio in human plasma by high performance liquid chromatography: usefulness as a marker in metastatic malignant melanoma. J. Chromato. B. 696, 9–17(1997)

    Article  CAS  Google Scholar 

  7. Li, X., Chen, Z., Yang. F., Pan, J., Li, Y.: Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens. J. Sep. Sci. 36, 1590–1596 (2013)

    Article  CAS  Google Scholar 

  8. Chen, H., Wang, X., Chopra, S., Adams, E., Schepdael, A.V.: Development and validation of an indirect pulsed electrochemical detection method for monitoring the inhibition of Abl1 tyrosine kinase. J. Pharm. Biomed. Anal. 90, 52–57 (2014)

    Article  CAS  Google Scholar 

  9. Stödeman, M., Dhar, N.: Microcalorimetric titration of a tetra-sulfonated calix[4]arene with alkylammonium ions in aqueous solution. J. Chem. Soc. Faraday. Trans. 94, 899–903 (1998)

    Article  Google Scholar 

  10. Bonal, C., Israe, L.Y., Morel, J.P.: Binding of inorganic and organic cations by p-sulfonato calix[4]arene in water, a thermodynamic study. Chem. Soc. Perkin. Trans. 2, 1075–1078 (2001)

    Article  Google Scholar 

  11. Shinkai, S., Araki, K., Manabe, O.: NMR determination of association constants for calixarene complexes. Evidence for the formation of a 1, 2 complex with calix[8]arene. J. Am. Chem. Soc. 110, 7214–7215 (1988)

    Article  CAS  Google Scholar 

  12. Liu, Y., Wang, L.H., Guo, D.S.: Thermodynamics of interactions between organic ammonium ions and sulfonatocalixarenes. Thermochim. Acta. 443,132–135(2006)

    Article  Google Scholar 

  13. Zhang, J., Guo, D.S., Liu, Y.: Solid-state supramolecular architecturesby p-sulfonatocalix[4] arene with bispyridinium derivatives. Chin. J. Chem. 28, 1575–1579 (2010)

    Article  CAS  Google Scholar 

  14. Guo, D.S., Wang, K., Wang, Y.X., Liu, Y.: Cholinesterase-responsive supramolecular vesicle. J. Am. Chem. Soc. 134, 10244–10250 (2012)

    Article  CAS  Google Scholar 

  15. Pang, T.T., Cai, Z.F., Du, L.M., Guo, M.D., Fu, Y.L.: Determination of tryptophan using a p-sulfonated calix [4,6,8]arene modified gold electrode. Anal. Lett. 47, 1808–1820 (2014)

    Article  CAS  Google Scholar 

  16. Pang, T.T., Du, L.M., Liu, H.L., Fu, Y.L.: Supeamolecular p-sulfonatedcalix[4,6,8]arene for tryptophan detection. Can. J. Chem. 92, 1139–1144 (2014)

    Article  CAS  Google Scholar 

  17. Hassen, W.M., Abdelghani, A., Vonna, L., Cherif, K., Boussaid, M., Maaref, M.A.: Electrochemical proprieties and topology of gold electrodes with adsorbed penicillin G for biosensor applications. Sens. Actuators B. 120, 621–627 (2007)

    Article  CAS  Google Scholar 

  18. Pan, D. W., Chen, J. H., Nie, L. H., Tao, W. Y., Yao, S. Z.: Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at Prussian blue-modified platinum electrode. Electrochim. Acta. 49, 795–801 (2004)

    Article  CAS  Google Scholar 

  19. Rajakannu, P., Elumalai, P., Hussain, F., Sathiyendiran, M.: Rhenium-based bicyclic supramolecule with calixarene-shaped bowls. J. Organomet. Chem. 725, 1–4 (2013)

    Article  CAS  Google Scholar 

  20. Miller, J. N., Miller, J. C.: Statistics and Chemometrics for Analytical Chemistry, 4th ed., pp. 122. Pearson Education Limited, Chichester (2000)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Scientific Research Foundation of shanxi Province (No. 050502070397), Shanxi Province Natural Science Fund (No. 2012011008-3), Shanxi Province Natural Science Fund (No. 2014021018-3). Helpful suggestions by anonymous referees are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Tao Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, TT., Zhang, XY. & Xue, YB. Determination of tyrosine using p-sulfonated calix[n]arene modified electrode. J Incl Phenom Macrocycl Chem 87, 275–282 (2017). https://doi.org/10.1007/s10847-017-0697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0697-5

Keywords

Navigation