Skip to main content
Log in

Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique is presented. The technique entails splitting kaolin to alumina and silica components. These components were further recombined to synthesize zeolite Y. The as-synthesized NaY zeolite was transformed to REY zeolite. Characterizations of the as-synthesized zeolite Y were carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer–Emmett–Teller (BET) texture analysis, scanning electron microscope (SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy. Catalytic desulfurization of the as-synthesized REY zeolite was studied using microwave assisted desulfurization of model diesel. The Si/Al molar ratio of the as-synthesized NaY zeolite was 4.27. The crystallinity of the as-synthesized NaY and REY zeolites were 79.1 and 56.5% respectively. The as-synthesized NaY and REY zeolites possessed hexagonal morphology with average crystal sizes of 200 and 100 nm respectively. The specific surface area, pore volume and pore diameter of the as-synthesized NaY zeolite were 732 m2 g−1, 0.2611 cm3 g−1 and 1.426 nm respectively. The specific surface area, pore volume and pore diameter of the as-synthesized REY zeolite were 456 m2 g−1, 0.1591 cm3 g−1 and 1.395 nm respectively. Zeolite Y synthesized using the split technique possessed physiochemical properties comparable to the commercial zeolite Y, it was also free of quartz and competing phase impurities reported in previous works. The as-synthesized REY zeolite resulted to 79% sulfur reduction when used as a catalyst in a microwave desulfurization of model diesel at 100 °C for 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Modi, C.K., Trivedi, P.M.: Zeolite-Y based nanohybrid materials; synthesis, characterization and catalytic aspects. Microporous Mesoporous Mater. 155, 227–232 (2012)

    Article  CAS  Google Scholar 

  2. Seryotkin, Y.V., Joswing, W., Bakakin, V.V., Belitsky, I.A., Fursenko, B.A.: High-temperature crystal structure of wairakite. Eur. J. Mineral. 15, 475–484 (2003)

    Article  CAS  Google Scholar 

  3. Cruciani, G.: Zeolites upon heating; factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 67, 1973–1994 (2006)

    Article  CAS  Google Scholar 

  4. Belviso, C., Cavalcante, F., Lettino, A., Fiore, S.: A and X-type zeolites synthesised from kaolinite at low temperature. Appl. Clay Sci. 80–81, 162–168 (2013)

    Article  Google Scholar 

  5. Baerlocher, C. McCusker, L.B.: Database of zeolite structures, http://www.izastructure.org/databases (2014). Accessed 23 July 2014

  6. Iyoki, K., Itabashi, K., Okubo, T.: Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous Mesoporous Mater. 189, 22–30 (2014)

    Article  CAS  Google Scholar 

  7. Trigueiro, F.E., Monteiro, D.F.J., Zotin, F.M.Z., Sousa-Aguiar, E.F.: Thermal stability of Y zeolites containing different rare earth cations. J. Alloys Compd. 344, 337–341 (2002)

    Article  CAS  Google Scholar 

  8. Mravec, D., Hudec, J., Janotka, H.: Some possibilities of catalytic and noncatalytic utilization of zeolites. Chem. Pap. 59, 62–69 (2005)

    CAS  Google Scholar 

  9. Zhao, Y., Liu, Z., Li, W., Zhao, Y., Pan, H., Liu, Y., Li, M., Kong, L., He, M.: Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size. Microporous Mesoporous Mater. 167, 102–108 (2013)

    Article  CAS  Google Scholar 

  10. Ertl, G., Knözinger, H., Weitkamp, J.: Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim (1997)

    Book  Google Scholar 

  11. Karami, D., Rohani, S.: Synthesis of pure zeolite Y using soluble silicate, a two-level factorial experimental design. Chem. Eng. Process. 48, 1288–1292 (2009)

    Article  CAS  Google Scholar 

  12. Balkus, K.J., Shi, J.: Synthesis of hexagonal Y type zeolites in the presence of Gd(III) complexes of 18-crown-6. Microporous Mater. 11, 325–333 (1997).

    Article  CAS  Google Scholar 

  13. Berger, C., Glaser, R., Rakoczy, R.A., Weitkamp, J.: The synthesis of large crystals of zeolite Y re-visited. Microporous Mesoporous Mater. 83, 333–344 (2005)

    Article  CAS  Google Scholar 

  14. Prokof’ev, V.Y., Gordina, N.E.: Preparation of granulated LTA and SOD zeolites from mechanically activated mixtures of metakaolin and sodium hydroxide. Appl. Clay Sci. 101, 44–51 (2014)

    Article  Google Scholar 

  15. Zaarour, M., Dong, B., Naydenova, I., Retoux, R., Mintova, S.: Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater. 189, 11–21 (2014)

    Article  CAS  Google Scholar 

  16. Koroglu, H.J., Sarıoglan, A., Tather, M., Erdem-Senatalar, A., Savasc, O.T.: Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities. J. Cryst. Growth 241, 481–488 (2002)

    Article  Google Scholar 

  17. Wanga, Z., Kumakiri, I., Tanaka, K., Chen, X., Kita, H.: NaY zeolite membranes with high performance prepared by a variable-temperature synthesis. Microporous Mesoporous Mater. 182, 250–258 (2013)

    Article  Google Scholar 

  18. Wajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., Nishiyama, T., Downs, R.T., Rakovan, J.F.: Zeolite synthesis from paper sludge ash at low temperature (90 °C) with addition of diatomite. J. Hazard. Mater. B132, 244–252 (2006)

    Article  Google Scholar 

  19. Mezni, M., Hamzaoui, A., Hamdi, N., Srasra, E.: Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Appl. Clay Sci. 52, 209–218 (2011)

    Article  CAS  Google Scholar 

  20. EL-Mekkawi, D.M., Selim, M.M.: Removal of Pb2+ from water by using Na-Y zeolites prepared from Egyptian kaolins collected from different sources. J. Environ. Chem. Eng. 2, 723–730 (2014)

    Article  CAS  Google Scholar 

  21. Johnson, E.B.G., Arshad, S.E.: Hydrothermally synthesized zeolites based on kaolinite: A review. Appl. Clay Sci. 97–98, 215–221 (2014)

    Article  Google Scholar 

  22. Liu, H., Shen, T., Li, T., Yuan, P., Shi, G., Bao, X.: Green synthesis of zeolites from a natural aluminosilicate mineral rectorite; Effects of thermal treatment temperature. Appl. Clay Sci. 90, 53–60 (2014)

    Article  CAS  Google Scholar 

  23. Khabuanchalad, S., Khemthong, P., Prayoonpokarach, S., Wittayakun, J.: Transformation of zeolite nay synthesized from rice husk silica to nap during hydrothermal synthesis. Suranaree J. Sci. Technol. 15, 225–231 (2008).

    Google Scholar 

  24. Musyoka, N.M., Petrik, L.F., Fatoba, O.O., Hums, E.: Synthesis of zeolites from coal fly ash using mine waters. Miner. Eng. 53, 9–15 (2013)

    Article  CAS  Google Scholar 

  25. Belviso, C., Cavalcante, F., Fiore, S.: Ultrasonic waves induce rapid zeolite synthesis in a seawater solution. Ultrason. Sonochem. 20, 32–36 (2013)

    Article  CAS  Google Scholar 

  26. Htay, M.M., Oo, M.M.: Preparation of zeolite Y catalyst for petroleum cracking. World Acad. Sci. Eng. Technol. 48, 114–120 (2008)

    Google Scholar 

  27. Musyoka, N.M., Missengue, R., Kusisakana, M., Petrik, L.F.: Conversion of South African clays into high quality zeolites. Appl. Clay Sci. 97–98, 182–186 (2014)

    Article  Google Scholar 

  28. Ahmed, A.S., Salahudeen, N., Ajinomoh, C.S., Hamza, H., Ohikere, A.: Studies on mineral and chemical characteristics of pindiga bentonitic clay. Pet. Technol. Dev. J. 2, 55–62 (2012)

    Google Scholar 

  29. Salahudeen, N., Ahmed, A.S., Ajinomoh, C.S., Hamza, H.: Surface area enhancement of pindiga bentonitic clay for usage as catalyst support. Pet. Technol. Dev. J. 2, 65–73 (2012)

    Google Scholar 

  30. Ginter, D.M., Bell, A.T., Radke, C.J.: Synthesis of Microporous Materials, Molecular Sieves. Reinhold, New York (1992)

    Google Scholar 

  31. Robson, H.: Verified Synthesis of Zeolitic Materials. Second edn., Elsevier, Netherlands (2001).

    Google Scholar 

  32. Treacy, M.M.J., Higgins, J.B.: Collection of Simulated XRD Powders for Zeolites. Elsevier, Netherlands (2001)

    Google Scholar 

  33. Bebon, C., Colson, D., Marrot, B., Klein, J.P., Renzo, F.D.: Synthesis of zeolites: study and applications of a new process of homogeneous shaking out of the medium to minimize the shear rate during the crystallization. Microporous Mesoporous Mater. 53, 13–20 (2002)

    Article  CAS  Google Scholar 

  34. Pal, P., Das, J. K., Das, N., Bandyopadhyay, S.: Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrason. Sonochem. 20, 314–321 (2013)

    Article  CAS  Google Scholar 

  35. Baerlocher, C., Meier, W.H., Olson, D.H., Atlas of zeolite framework types. Sixth edn., Elsevier, Netherlands (2007).

    Google Scholar 

  36. Valtchev, V., Majano, G., Mintova, S., Perez-Ramirez, J.: Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 42, 263–290 (2013)

    Article  CAS  Google Scholar 

  37. Serrano, D.P., Escola, J.M., Pizarro, P.: Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 42, 4004–4035 (2013)

    Article  CAS  Google Scholar 

  38. Ng, S.H., Zhu, Y., Humphies, A., Nakajima, N., Tsai, T.Y.R., Ding, F., Ling, H., Yui, S.: Key observations from a comprehensive FCC study on Canadian heavy gas oils from various origins; 1. Yield profiles in batch reactors. Fuel Process. Technol. 87, 475–485 (2006)

    Article  CAS  Google Scholar 

  39. Ding, F., Ng, S.H., Xu, C., Yui, S.: Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs though catalyst selection. Fuel Process. Technol. 88, 833–845 (2007)

    Article  CAS  Google Scholar 

  40. Li, X., Li, C., Zhang, J., Yang, C., Shan, H.: Effects of temperature and catalyst to oil weight ratio on the catalytic conversion of heavy oil to propylene using ZSM-5 and USY catalysts. J. Nat. Gas Chem. 16, 92–99 (2007)

    Article  CAS  Google Scholar 

  41. Jia, L., Sun, X., Ye, X., Zou, C., Gu, H., Huang, Y., Niu, G., Zhao, D.: Core–shell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Microporous Mesoporous Mater. 176, 16–24 (2013)

    Article  CAS  Google Scholar 

  42. Subhan, F., Liu, B.S., Zhang, Y., Li, X.G.: High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel. Fuel Process. Technol. 97, 71–78 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial and technical supports of Petroleum Development Trust Fund (PDTF), Abuja. Ahmadu Bello University, Zaria, Nigeria, and Sultan Qaboos University, Muscat, Oman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurudeen Salahudeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahudeen, N., Ahmed, A.S. Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique. J Incl Phenom Macrocycl Chem 87, 149–156 (2017). https://doi.org/10.1007/s10847-016-0686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0686-0

Keywords

Navigation