Skip to main content
Log in

New In(OiPr)3-MCM-41 heterogeneous catalyst in MPV reductions of unsaturated carbonyl compounds: effect of mesoporous SBA-15 and MCM-41 as supporting surfaces on catalytic activity of In(OiPr)3

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Indium tri-isopropoxide, In(OiPr)3, was immobilized on mesoporous material, MCM-41, and denoted as “In(OiPr)3-MCM-41”. This new heterogeneous catalyst was characterized by XRD, 29Si NMR-, N2 adsorption–desorption isotherms and ICP-OES techniques. The new heterogeneous catalyst, In(OiPr)3-MCM-41, was tested for the capable of catalyzed Meerwein–Ponndorf–Verley (MPV) reduction of unsaturated aldehydes and ketones with low catalyst loadings under mild conditions and showed good to excellent catalytic activities. Also, effect of supporting surfaces, both of SBA-15 and MCM-41, on catalytic activity of In(OiPr)3 were examined. In(OiPr)3-SBA-15 heterogeneous catalyst in comparison with the In(OiPr)3-MCM-41 catalyst, display comparatively higher catalytic activity in the MPV reduction of unsaturated aldehydes and ketones. Also, similiar reaction times and selectivities for the unsaturated alcohols were obtained with the In(OiPr)3-SBA-15 catalyst compared with the In(OiPr)3-MCM-41 catalyst. The reason for the lower activity observed for MCM-41 sample may be due to smaller pore size of the In(OiPr)3-MCM-41 catalyst as compared with In(OiPr)3-SBA-15 catalyst can creat restrict site accessibility for the carbonyl compounds. Eventually, effect of supporting surfaces, SBA-15 and MCM-41, on catalytic activity of In(OiPr)3 insignificant for MPV reduction of unsaturated carbonyl compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Minambres, J.F., Aramendia, M.A., Marinas, A., Marinas, J.M., Urbano, F.J.: Liquid and gas-phase Meerwein–Ponndorf–Verley reduction of crotonaldehyde on ZrO2 catalysts modified with Al2O3, Ga2O3 and In2O3. J. Mol. Catal. A 338, 121–129 (2011)

    CAS  Google Scholar 

  2. Urbano, F.J., Aramendía, M.A., Marinas, A., Marinas, J.M.: An insight into the Meerwein–Ponndorf–Verley reduction of alpha, beta-unsaturated carbonyl compounds: tuning the acid-base properties of modified zirconia catalysts. J. Catal. 268, 79–88 (2009)

    Article  CAS  Google Scholar 

  3. Shylesha, S., Mahendra, P.K., Lekh, R.J., Prinson, P.S., Srilakshmic, Ch., Singha, A.P.: Catalytic Meerwein–Ponndorf–Verley reductions over mesoporous silica supports: rational design of hydrophobic mesoporous silica for enhanced stability of aluminum doped mesoporous catalysts. J. Mol. Catal. A 301, 118–126 (2009)

    Article  Google Scholar 

  4. Ooi, T., Miura, T., Itagaki, Y., Ichikawa, H., Maruoka, K.: Catalytic Meerwein–Ponndorf–Verley (MPV) and Oppenauer (OPP) reactions: remarkable acceleration of the hydride transfer by powerful bidentate aluminum alkoxides. Synthesis 18, 279–291 (2002)

    Article  Google Scholar 

  5. Akamanchi, K.G., Varalakshmy, N.R.: Aluminium isopropoxide—TFA, a modified catalyst for highly accelerated meerwein–ponndorf–verley (MPV) reduction. Tetrahedron Lett. 36, 3571–3572 (1995)

    Article  CAS  Google Scholar 

  6. Ishii, Y., Nakano, T., Inada, A., Kishigami, Y., Sakurai, K., Ogawa, M.: Meerwein–Ponndorf–Verley type reduction of ketones and Oppenauer type oxidation of alcohols under the influence of bis(cyclopentadienyl)zirconium dihydride. J. Org. Chem. 51, 240–242 (1986)

    Article  CAS  Google Scholar 

  7. Knauer, B., Krohn, K.: A reinvestigation of the Meerwein–Ponndorf–Verley reduction a highly efficient variation using zirconium catalysts. Liebigs Ann. 4, 677–683 (1995)

    Article  Google Scholar 

  8. Namy, J.L., Souppe, J., Collin, J., Kagan, H.B.: New preparations of lanthanide alkoxides and their catalytical activity in Meerwein–Ponndorf–Verley–Oppenauer reactions. J. Org. Chem. 49, 2045–2049 (1984)

    Article  CAS  Google Scholar 

  9. Lee, J., Ryu, T., Park, S., Lee, P.H.: Indium Tri(isopropoxide)-catalyzed selective Meerwein–Ponndorf–Verley reduction of aliphatic and aromatic aldehydes. J. Org. Chem. 77, 4821–4825 (2012)

    Article  CAS  Google Scholar 

  10. Uysal, B., Oksal, B.S.: Comparison of heterogeneous B(OiPr)3-MCM-41 and homogeneous B(OiPr)3, B(OEt)3 catalysts for chemoselective MPV reductions of unsaturated aldehydes and ketones. Appl. Catal. A 435–436, 204–216 (2012)

    Article  Google Scholar 

  11. Uysal, B., Oksal, B.S.: A new method for the chemoselective reduction of aldehydes and ketones using boron tri-isopropoxide, B(OiPr)3: Comparison with boron tri-ethoxide, B(OEt)3. J. Chem. Sci. 123, 681–685 (2011)

    Article  CAS  Google Scholar 

  12. Uysal, B., Buyuktas, B.S.: Kinetics of catalytic Meerwein–Ponndorf–Verley reduction of aldehydes and ketones using boron triethoxide. Chem Pap. 64, 123–126 (2010)

    Article  CAS  Google Scholar 

  13. Uysal, B., Buyuktas, B.S.: Chemoselective reduction of aldehydes and ketones to alcohols using boron tri-isopropoxide, B(O-i-Pr)3 and boron tri-secondary butoxide, B(O-s-Bu)3 as catalysts. Arkıvoc 14, 134–140 (2007)

    Google Scholar 

  14. Mojtahedi, M.M., Akbarzadeh, E., Sharifi, R., Abaee, M.S.: Lithium bromide as a flexible, mild, and recyclable reagent for solvent-free cannizzaro, tishchenko, and meerwein–ponndorf–verley reactions. Org. Lett. 9, 2791–2793 (2007)

    Article  CAS  Google Scholar 

  15. Nishimura, S.: Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York (2001)

    Google Scholar 

  16. Corma, A., Domine, M.E., Valencia, S.: Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and oppenauer reactions catalyzed by tin-beta zeolite. J. Catal. 215, 294–304 (2003)

    Article  CAS  Google Scholar 

  17. Boronat, M., Corma, A., Renz, M.: Mechanism of the Meerwein–Ponndorf–Verley–Oppenauer (MPVO) redox equilibrium on Sn and Zr beta zeolite catalysts. J. Phys. Chem. B 110, 21168–21174 (2006)

    Article  CAS  Google Scholar 

  18. Creyghton, E.J., Ganeshie, S.D., Downing, R.S., Van Bekkum, H.: Stereoselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalysed by zeolite BEA. J. Mol. Catalysis A 115, 457–472 (1997)

    Article  CAS  Google Scholar 

  19. Kunkeler, P.J., Zuurdeeg, B.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C., Van Bekkum, H.: Zeolite beta: the relationship between calcination procedure, aluminum configuration, and Lewis acidity. J. Catl 180, 234–244 (1998)

    Article  CAS  Google Scholar 

  20. Anwander, R., Palm, C.: Meerwein–Ponndorf–Verley reductions mediated by lanthanide-alkoxide-functionalized mesoporous silicates. Stud. Surf. Sci. Catal. 117, 413–420 (1999)

    Article  Google Scholar 

  21. Anwander, R., Palm, C., Gerstberger, G., Groeger, O., Engelhardt, G.: Enhanced catalytic activity of MCM-41-grafted aluminium isopropoxide in MPV reductions. Chem. Commun. 17, 1811–1812 (1998)

    Article  Google Scholar 

  22. Ivanov, V.A., Bachelier, J., Audry, F., Lavalley, J.C.: Study of the Meerwein—Pondorff—Verley reaction between ethanol and acetone on various metal oxides. J. Mol. Catal. 91, 45–59 (1994)

    Article  CAS  Google Scholar 

  23. Leyrit, P., Mc Gill, C., Quignard, F., Choplin, A.: A novel heterogeneous molecular catalyst for the Meerwein–Ponndorf–Verley and Oppenauer reactions. J. Mol. Catal. A 112, 395–400 (1996)

    Article  CAS  Google Scholar 

  24. Van der Waal, J.C., Creyghton, E.J., Kunkeler, P.J., Tan, K., Van Bekkum, H.: Beta–type zeolites as selective and regenerable catalysts in the Meerwein–Ponndorf–Verley reduction of carbonyl compounds. Top. Catal. 4, 261–268 (1998)

    Article  Google Scholar 

  25. Anwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E., Spiegler, M.: Synthesis and structural characterisation of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41. J. Chem. Soc. pp. 847–858 (1998)

  26. O’Brien, S., Tudor, J., Barlow, S., Drewitt, M.J., Heyes, S.J., O’Hare, D.: Modification of MCM41 via ring opening of a strained [1] ferrocenophane. Chem. Commun. 6, 641–642 (1997)

    Article  Google Scholar 

  27. Kresege, C.T., Leonowicz, M.E., Roth, W.J., Vartadi, J.C., Beck, J.S.: Ordered mesoporous molecular sieves sythesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  Google Scholar 

  28. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresege, C.T., Schmitt, K.D., Chu, C.T., Olson, D.H., Sheppard, E.W., Mccullen, S.B., Higgius, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  29. Oberhagemann, U., Jeschke, M., Papp, H.: Synthesis of highly ordered boron-containing B-MCM-41 and pure silica MCM-41. Microporous Mesoporous Mater. 33, 165–172 (1999)

    Article  CAS  Google Scholar 

  30. Stevens, W.J.J., Lebeau, K., Mertens, M., van Tendeloo, G., Cool, P., Vansant, E.F.: Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials. J. Phys. Chem. B 110, 9183–9187 (2006)

    Article  CAS  Google Scholar 

  31. Taguchi, A., Schuth, F.: Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005)

    Article  CAS  Google Scholar 

  32. Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997)

    Article  CAS  Google Scholar 

  33. Zhang, F., Yan, Y., Yang, H., Meng, Y., Yu, C., Tu, B., Zhao, D.: Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. J. Phys. Chem. B 109, 8723–8732 (2005)

    Article  CAS  Google Scholar 

  34. Rahmat, N., Zuhairi, A.A., Rahman Mohamed, A.: A review: mesoporous santa barbara amorphous-15, types, synthesis and its applications towards biorefinery production. Am. J. Appl. Sci. 7, 1579–1586 (2010)

    Article  CAS  Google Scholar 

  35. Iglesias, J., Melero, J.A., Morales, G., Moreno, J., Segura, Y., Paniagua, M., Cambra, A., Hernández, B.: Zr-SBA-15 lewis acid catalyst: activity in Meerwein–Ponndorf–Verley reduction. Catalysts 5, 1911–1927 (2015)

    Article  CAS  Google Scholar 

  36. Bruyn, M.D., De Vos, D.E., Jacobs, P.A.: Chemoselective hydrogen transfer reduction of unsaturated ketones to allylic alcohols with Solid Zr and Hf catalysts. Adv. Synth. Catal. 344, 1120–1125 (2002)

    Article  Google Scholar 

  37. Uysal, B., Aksu, Y., Oksal, B.S.: Chemoselective reduction of α, β-unsaturated aldehydes and ketones over mesoporous B(OiPr)3–MCM-41 catalyst via MPV reduction process: preparation, characterization and catalytic application. J. Porous Mater. 20, 115–127 (2013)

    Article  CAS  Google Scholar 

  38. Uysal, B.: Activity of B(OEt)3-MCM-41 catalyst in the MPV reduction of crotonaldehyde. J. Chem. Sci. 125, 1385–1393 (2013)

    Article  CAS  Google Scholar 

  39. Uysal, B., Oksal, B.S.: New heterogeneous B(OEt)3-MCM-41 catalyst for preparation of α, β-unsaturated alcohols. Res. Chem. Intermed. 41, 3893–3911 (2015)

    Article  CAS  Google Scholar 

  40. Quignard, F., Graziani, O., Choplin, A.: Group 4 alkyl complexes as precursors of silica anchored molecular catalysts for the reduction of ketones by hydrogen transfer. Appl. Catal. A 182, 29–40 (1999)

    Article  CAS  Google Scholar 

  41. Inada, K., Shibagaki, M., Nakanishi, Y., Matsushita, H.: The catalytic reduction of aldehydes and ketones with 2-propanol oversilica-supported zirconium catalyst. Chem. Lett. 22, 1795–1798 (1993)

    Article  Google Scholar 

  42. Zhu, Y., Jaenicke, S., Chuah, G.K.: Supported zirconium propoxide—a versatile heterogeneous catalyst for the Meerwein–Ponndorf–Verley reduction. J. Catal. 218, 396–404 (2003)

    Article  CAS  Google Scholar 

  43. Uysal, B., Oksal, B.S.: Catalytic activity of SBA-15-grafted indium tri-isopropoxide in chemoselective MPV reductions. J. Porous Mater. 22, 1053–1064 (2015)

    Article  CAS  Google Scholar 

  44. Kinski, I., Gies, H., Marlow, F.: Ordered and disordered pNA molecules in mesoporous MCM-41. Zeolite 19, 375–381 (1997)

    Article  CAS  Google Scholar 

  45. Xu, J., Luan, Z., He, H., Zhou, W., Kevan, L.: A reliable synthesis of cubic mesoporous MCM-48 molecular sieve. Chem. Mater. 10, 3690–3698 (1998)

    Article  CAS  Google Scholar 

  46. De Graauw, C.F., Peters, J.A., van Bekkum, H., Huskens, J.: Meerwein–Ponndorf–Verley reductions and oppenauer oxidations: an integrated approach. Synthesis 10, 1007–1017 (1994)

    Article  Google Scholar 

  47. Taylor, W.G., Schreck, C.E.: Chiral-phase capillary gas chromatography and mosquito repellent activity of some oxazolidine derivatives of (+)− and (−)−citronellol. J. Pharm. Sci. 74, 534–539 (1985)

    Article  CAS  Google Scholar 

  48. Revay, E.E., Kline, D.L., Xue, R.D., Qualls, W.A., Bernier, U.R., Kravchenko, V.D., Ghattas, N., Pstygo, I., Müller, G.C.: Reduction of mosquito biting-pressure: Spatial repellents or mosquito traps? A field comparison of seven commercially available products in Israel. Acta Trop. 127, 63–68 (2013)

    Article  Google Scholar 

  49. Songkro, S., Hayook, N., Jaisawang, J., Maneenuan, D., Chuchome, T., Kaewnopparat, N.: Investigation of inclusion complexes of citronella oil, citronellal and citronellol with [beta]-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem. 72, 339–355 (2011)

    Article  Google Scholar 

  50. Song, W., Liu, X.H., Shi, Y.: Citronellol terpenoid inhibits cancer cell proliferation and induces apoptosis in non-small cell lung carcinoma. Lat. Am. J. Pharm. 34, 1652–1657 (2015)

    CAS  Google Scholar 

  51. Lopez, J., Valente, J.S., Clacens, J.M., Figueras, F.: Hydrogen transfer reduction of 4-tert-butylcyclohexanone and aldol condensation of benzaldehyde with acetophenone on basic solids. J. Catal. 208, 30–37 (2002)

    Article  CAS  Google Scholar 

  52. Samuel, P.P., Shylesh, S., Singh, A.P.: Catalytic properties of tin-containing mesoporous molecular sieves in the selective reduction of carbonyl compounds (Meerwein–Ponndorf–Verley (MPV) reaction). J. Mol. Catal. A 266, 11–20 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 113Z389 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Uysal Karatas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatas, B.U., Oksal, B.S. & Karatas, E. New In(OiPr)3-MCM-41 heterogeneous catalyst in MPV reductions of unsaturated carbonyl compounds: effect of mesoporous SBA-15 and MCM-41 as supporting surfaces on catalytic activity of In(OiPr)3 . J Incl Phenom Macrocycl Chem 87, 85–94 (2017). https://doi.org/10.1007/s10847-016-0680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0680-6

Keywords

Navigation