Advertisement

Structure of the β-cyclodextrin: acetamiprid insecticide inclusion complex in solution and solid state

  • Maria Luz Alonso
  • Eider Sebastián
  • Leire San Felices
  • Pablo Vitoria
  • Rosa María Alonso
Original Article
  • 252 Downloads

Abstract

The molecular microencapsulation process, through the formation of the inclusion complex with β-cyclodextrin (β-CD), shows numerous environmental and industrial cost advantages, such as, stability improvement of the active substance, synthesis of water-based products, option of commercializing the final product either in solid state or in solution and avoidance of the undesired side-effects derived from the use of insecticides. Furthermore, the inclusion complexes have other advantages that involve controlled and specific release of active component in the medium. In this work the synthesis of the inclusion complex formed by β-CD and the acetamiprid (ACET) nicotinoid insecticide ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methyl-acetamidine) was done and their molecular structure was studied in solid state and in solution, by means of experimental techniques. The 2:2 stoichiometry found in solid state, a structure based on dimmers classified as a channel type, is similar to that found in solution (1:1 stoichiometry). In both cases, the nitrile and chloropyridine groups of the insecticide molecules are oriented toward primary rim and secondary rim of the β-CD molecule, respectively.

Keywords

Acetamiprid (ACET) β-cyclodextrin (β-CD) Single crystal and powder X-ray diffraction (XRD) Fourier transform infrared spectroscopy (FTIR) 1D and 2D Nuclear magnetic resonance spectroscopy (NMR) 

Notes

Acknowledgments

Authors thank the Basque Country Government for financial support (Project IT789-13). They also thank the technicians of SGIkers for a generous allocation of SXRD measurements, financed by the national program for the promotion of human resources within the national plan of scientific research, development and innovation, “Ministerio de Ciencia e Innovación”, Fondo Social Europeo (FSE)” and “Gobierno Vasco, Dirección de Politica Cientifica”. And finally, authors thank the Cambridge Crystallographic Data Centre (CCDC) by the number of Crystallographic Deposition, 1046865.

References

  1. 1.
    Fitzgerald, J.: Laboratory bioassays and field evaluation of insecticides for the control of Anthonomus rubi, Lygus rugulipennis and Chaetosiphon fragaefolii, and effects on beneficial species, in UK strawberry production. Crop Prod. 23, 801–809 (2004)CrossRefGoogle Scholar
  2. 2.
    Blacquière, T., Smagghe, G., van Gestel, C.A.M., Mommaerts, V.: Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992 (2012)CrossRefGoogle Scholar
  3. 3.
    www.ec.europa.eu. Accessed 22 Dec 2015
  4. 4.
    Rivas, I.P., Gil-Alegre, M.E., Torres-Suárez, A.I.: Development and validation of a fast high-performance liquid chromatography method for the determination of microencapsulated pyrethroid pesticides. Anal. Chim. Acta 557, 245–251 (2006)CrossRefGoogle Scholar
  5. 5.
    Filippa, M., Sancho, M.I., Gasull, E.: Encapsulation of methyl and ethyl salicylates by beta-cyclodextrin HPLC, UV-vis and molecular modeling studies. J. Pharm. Biom. Anal. 48, 969–973 (2008)CrossRefGoogle Scholar
  6. 6.
    Szejtli, J., Osa, T.: Comprehensive Supramolecular Chemistry. Elsevier Science, Oxford (1996)Google Scholar
  7. 7.
    Szejtli, J.: Cyclodextrins and their Inclusion Complexes. Kiado, Budapest (1982)Google Scholar
  8. 8.
    Szejtli, J.: Cyclodextrins Technology. Kluwer, Dordrecht (1988)CrossRefGoogle Scholar
  9. 9.
    Yan, C., Li, X., Xiu, Z., Hao, C.: A quantum-mechanical study on the complexation of b-cyclodextrin with quercetin. J. Mol. Struct. 764, 95–100 (2006)CrossRefGoogle Scholar
  10. 10.
    Douhal, A.: Cyclodextrin Materials Photochemistry, Photophysics and Photobiology. Elsevier, Oxford (2006)Google Scholar
  11. 11.
    Dugas, H., Penney, C.: Bioorganic Chemistry Frontiers, vol. 2. Springer-Verlag, New York (1999)Google Scholar
  12. 12.
    Torres, Z.V.: Organic Chemistry in Confining Media. Springer, New York (2013)Google Scholar
  13. 13.
    Liu, L., Guo, Q.X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl Phenom. Macrocycl. Chem. 42, 1–14 (2002)CrossRefGoogle Scholar
  14. 14.
    Alonso, M.L., Laza, J.M., Alonso, R.M., Jiménez, R.M., Vilas, J.L., Fañanás, R.: Advantages of biocides:β-cyclodextrin inclusion complexes against active components for pesticide industry. Int. J. Environ. Anal. Chem. 92, 963–978 (2012)CrossRefGoogle Scholar
  15. 15.
    Alonso, M.L.: Microencapsulación de pesticidas, Ph.D thesis, Univeristy of the Basque Country (2011)Google Scholar
  16. 16.
    Scher, H.B.: Microencapsulated Pesticides. Controlled Release Pesticides. Marcel Dekker, New York (2009)Google Scholar
  17. 17.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev. 98, 91787–91802 (1998)CrossRefGoogle Scholar
  18. 18.
    He, Y., Fu, P., Shen, X., Gao, H.: Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516 (2008)CrossRefGoogle Scholar
  19. 19.
    Mentzafos, D., Mavridis, I.M., Le Bas, G., Tsoucaris, G.: Structure of the 4-tert-butylbenzyl alcohol-beta-cyclodextrin complex. Common features in the geometry of beta-cyclodextrin dimeric complexes. Acta Cryst. B 47(5), 746–757 (1991)CrossRefGoogle Scholar
  20. 20.
    Tsorteki, F., Bethanis, K., Pinotsis, N., Giastas, P., Mentzafos, D.: Inclusion compounds of plant growth regulators in cyclodextrins. V. 4-chlorophenoxyacetic acid encapsulated in β-cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β- cyclodextrin. Acta Cryst. B 61, 207–217 (2005)CrossRefGoogle Scholar
  21. 21.
    Bethanis, K., Tzamalis, P., Tsorteki, F., Kokkinou, A., Christoforides, E., Mentzafos, D.: Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography. J. Incl. Phenom. Macrocycl. Chem. 77, 1–4 (2013)CrossRefGoogle Scholar
  22. 22.
    Kokkinou, A., Yannakopoulou, K., Mavridis, I.M., Mentzafosa, D.: Structure of the complex of cyclodextrin with naphthyloxyacetic acid in the solid state and in aqueous solution. Carbohydr. Res. 332, 85–94 (2001)CrossRefGoogle Scholar
  23. 23.
    Wang, E.J., Lian, Z.X., Cai, J.: The crystal structure of the 1:1 inclusion complex of β-cyclodextrin with benzamide. Carbohydr. Res. 342, 767–771 (2007)CrossRefGoogle Scholar
  24. 24.
    Blake, A.J., Clegg, W., Cole, J.M., Evans, J.S.O., Main, P., Parsons, S., Watkin, D.J.: Crystal Structure Analysis Principles and Practice. Oxford University, New York (2008)Google Scholar
  25. 25.
    Malpezzi, L., Fronza, G., Fuganti, C., Mele, A., Bruckner, S.: Crystal architecture and conformational properties of the inclusion complex, neohesperidin dihydrochalcone-cyclomaltoheptaose (beta-cyclodextrin), by X-ray diffraction. Carbohydr. Res. 339, 2117–2125 (2004)CrossRefGoogle Scholar
  26. 26.
    Yap, K.L., Liu, X., Thenmozhiyal, J.C., Ho, P.C.: Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis. Eur. J. Pharm. Sci. 25, 49–56 (2005)CrossRefGoogle Scholar
  27. 27.
    Raju, R.K., Hillier, I.H., Burton, N.A., Vincent, M.A., Doudou, S., Bryce, R.A.: The effects of perfluorination on carbohydrate-pi Interactions: computational studies of the interaction of benzene and hexafluorobenzene with fucose and cyclodextrin. Phys. Chem. Chem. Phys. 12, 7959–7967 (2010)CrossRefGoogle Scholar
  28. 28.
    Brett, T.J., Alexander, J.M., Stezowski, J.J.: Chemical insight from crystallographic disorder-structural studies of supramolecular photochemical systems. Part 2.1 The β-cyclodextrin– 4,7-dimethylcoumarin inclusion complex: a new β-cyclodextrin dimer packing type, unanticipated photoproduct formation, and an examination of guest influence on β-CD dimer packing. J. Chem. Soc. 2, 1095–1103 (2000)Google Scholar
  29. 29.
    Morales, A., Strppe, J., Meléndez, E.: Host-guest between niobencene dichloride and α-, β-, and γ-cyclodextrins: preparation and characterization. J. Incl. Phenom. Macrocycl. Chem. 60, 263–270 (2008)CrossRefGoogle Scholar
  30. 30.
    Farcas, A., Jarroux, N., Farcas, A.M., Harabagiu, V., Guegan, P.: Synthesis and Characterization of Furosemide complex in Cyclodextrin. Dig. J. Nanomater. Biostruct. 1, 55–60 (2006)Google Scholar
  31. 31.
    Ficarra, R., Tommasini, S., Raneri, D., Calabro, M.L., Di Bella, M.R., Rustichelli, C., Gamberini, M.C., Ficarra, P.: Study of flavonoids β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J. Pharm. Biomed. Anal. 29, 1005–1014 (2002)CrossRefGoogle Scholar
  32. 32.
    Anguiano-Igea, F.J., Otero-Espinar, L., Vila-Jato, J.: Interaction of clofibrate with cyclodextrin in solution: phase solubility, 1H NMR and molecular modelling studies. Eur. J. Pharm. Sci. 5, 215–221 (1997)CrossRefGoogle Scholar
  33. 33.
    Herrera, A., Martinez, R.: Tablas para la determinación estructural por métodos espectroscópicos. Springer-Verlag, Barcelona (2000)Google Scholar
  34. 34.
    Zhao, R., Tan, T., Sandström, C.: NMR studies on puerarin and its interaction with beta-cyclodextrin. J. Biol. Phys. 37(4), 387–400 (2011)CrossRefGoogle Scholar
  35. 35.
    Jahed, V., Zarrabi, A., Bordbar, A.K., Hafezi, M.S.: NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem. 165, 241–246 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Analytical Chemistry Department, Faculty of Science and TechnologyUniversity of Basque Country (UPV/EHU)LeioaSpain
  2. 2.Applied Chemistry Department - Inorganic Chemistry Department. Chemistry FacultyUniversity of Basque Country (UPV/EHU)San SebastianSpain
  3. 3.SGIkerUniversity of Basque Country (UPV/EHU)LeioaSpain
  4. 4.Inorganic Chemistry Department, Faculty of Science and TechnologyUniversity of Basque Country (UPV/EHU)LeioaSpain

Personalised recommendations