Synthesis, structural characterization and extraction studies of 17-, 18-, 19- and 20-membered N2O2-donor macrocyclic Schiff bases

  • Tomislav Balić
  • Brunislav Matasović
  • Berislav MarkovićEmail author
  • Anamarija Šter
  • Marija Štivojević
  • Dubravka Matković-Čalogović
Original Article


Two new macrocyclic Schiff bases m 3 and m 4 (m 3 = 1,5-diaza-2,4:7,8:17,18-tribenzo-9,16-dioxa-cyclononadeca-1,5-dien; m 4 = 1,5-diaza-2,4:7,8:18,19- tribenzo-9,17-dioxa-cycloeicosa-1,5-dien) were synthesized by reactions of the appropriate dialdehyde and diamine. The compounds were characterized by means of FT-IR and NMR spectroscopy, TG/DSC and elemental analysis. The crystal and molecular structures were determined by the single crystal X-ray diffraction method. Both molecules are N2O2-donor macrocyclic Schiff bases with 19 and 20 atoms in their inner macrocyclic rings and of a similar molecular structure. A different crystal packing arrangement of the molecules is caused by the differences in macrocycle planarity. The extraction experiments of the aforementioned compounds were performed by using metallic picrate salts, and simultaneously for the previously synthesized 17- and 18- membered macrocyclic analogues (m 2 and m 1). The metal cation extractability was determined for m 1, m 2, m 3 and m 4 by UV–Vis spectrophotometry in order to find correlation of structural features and the extraction capabilities of the Schiff bases. The highest metal cation extraction percentage was determined for the Hg2+ ion in the case of the m 2 macrocycle.


Schiff base macrocycles N2O2-donor Crystal and molecular structure Metal ion extraction 

Supplementary material

10847_2016_621_MOESM1_ESM.docx (416 kb)
Electronic supplementary information (ESI) available: IR, TG/DSC, NMR figures and tables of bond lengths and angles. CCDC 1445992 and 1445995 contains the supplementary crystallographic data for compounds m 3 and m 4, respectively. The data can be obtained free of charge via, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: (DOCX 415 kb)


  1. 1.
    Yilmaz, O., Ünlü, K., Cokca, E.: Solidification/stabilization of hazardous containing metals and organic contaminants. J. Environ. Eng. 129, 366–376 (2003)CrossRefGoogle Scholar
  2. 2.
    Matasović, B., Bonifačić, M.: Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms. Radiat. Phys. Chem. 80, 750–754 (2011)CrossRefGoogle Scholar
  3. 3.
    Matasović, B., Bonifačić, M.: Reductive halogen elimination from phenols by organic radicals in aqueous solutions; chain reaction induced by proton-coupled electron transfer. J. Phys. Chem. 111, 8622–8628 (2007)CrossRefGoogle Scholar
  4. 4.
    Ljubić, I., Matasović, B., Bonifačić, M.: An efficient buffer-mediated control between free radical substitution and proton-coupled electron transfer: dehalogenation of iodoethane by the α-hydroxyethyl radical in aqueous solution. Phys. Chem. Chem. Phy. 15, 18001–18011 (2013)CrossRefGoogle Scholar
  5. 5.
    Biswas, B., Sarkar, B., Rusmin, R., Naidu, R.: Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction. Environ. Int. 85, 168–181 (2015)CrossRefGoogle Scholar
  6. 6.
    Wang, A.N., Teng, Y., Hu, X.F., Wu, L.H., Huang, Y.J., Luo, Y.M., Christie, P.: Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties. Sci. Total Environ. 541, 348–355 (2016)CrossRefGoogle Scholar
  7. 7.
    Nakagawa, K., Inoue, Y., Hakushi, T.: Solvent extraction of lanthanoid picrates with benzocrown ethers: enhanced cation selectivities. J. Chem. Res. S 11, 348–349 (1990)Google Scholar
  8. 8.
    Katsuta, S., Kanazawa, M., Takeda, Y., Ouchi, M.: Extraction equilibria of various metal picrates with 19-crown-6 between benzene and water. Effect of the extra methylene group on extraction ability and selectivity. Talanta 49, 785–791 (1999)CrossRefGoogle Scholar
  9. 9.
    Morillo, J., Usero, J., Gracia, I.: Heavy metal fractionation in sediments from the Tinto river (Spain). Int. J. Environ. Anal. Chem. 82, 245–257 (2002)CrossRefGoogle Scholar
  10. 10.
    Cabbines, D.K., Margerum, D.W.: Macrocyclic effect on stability of copper(II) tetramine complexes. J. Am. Chem. Soc. 91(23), 6540 (1969)CrossRefGoogle Scholar
  11. 11.
    Lindoy, L.F., Meehan, G.V., Vasilescu, I.M., Kim, H.J., Lee, J.E., Lee, S.S.: Transition and post-transition metal ion chemistry of dibenzo-substituted, mixed-donor macrocycles incorporating five donor atoms. Coord. Chem. Rev. 254, 1713–1725 (2010)CrossRefGoogle Scholar
  12. 12.
    Adam, K.R., Baldwin, D.S., Lindoy, L.F., Meehan, G.V., Vasilescu, I.M., Wei, G.: Metal-ion recognition. Modeling the stability constants of some mixed-donor macrocyclic metal ion complexes—a simple model. Inorg. Chim. Acta 352, 46–50 (2003)CrossRefGoogle Scholar
  13. 13.
    Adam, K.R., Baldwin, D.S., Duckworth, P.A., Lindoy, L.F., McPartlin, M., Bashall, A., Powell, H.R., Tasker, P.A.: Macrocyclic ligand design—effect of donor-set and ring-size variation on silver(I) lead(II) discrimination within an extended series of dibenzo substituted rings. J. Chem. Soc. Dalton Trans. 7, 1127–1131 (1995)CrossRefGoogle Scholar
  14. 14.
    Faridbod, F., Ganjali, M.R., Larijani, B., Norouzi, P., Riahi, S., Mirnaghi, F.S.: Lanthanide recognition: an asymetric erbium microsensor based on a hydrazone derivative. Sensors 7, 3119–3135 (2007)CrossRefGoogle Scholar
  15. 15.
    Gok, H.Z., Demir, H.A.: Study of interfacial adsorption isotherm at divided interface for novel macrocycles in solvent extraction. J. Incl. Phenom. Macrocycl. Chem. 81, 95–104 (2015)CrossRefGoogle Scholar
  16. 16.
    Al Zoubi, W.: Solvent extraction of metal ions by use of Schiff bases. J. Coord. Chem. 66, 2264–2289 (2013)CrossRefGoogle Scholar
  17. 17.
    Pedersen, C.J.: The discovery of crown ethers. J. Incl. Phenom. 6, 337–350 (1988)CrossRefGoogle Scholar
  18. 18.
    Goedken, V.L., Busch, D.H.: Facile promotion of oxidative dehydrogenation by iron ions and synthesis of new complexes of iron with highly unsaturated tetraaza macrocycles. J. Am. Chem. Soc. 94, 7355 (1972)CrossRefGoogle Scholar
  19. 19.
    Curtis, N.F.: Macrocyclic coordination compounds formed by condensation of metal-amine complexes with aliphatic carbonyl compounds. Coord. Chem. Rev. 3, 3 (1968)CrossRefGoogle Scholar
  20. 20.
    Buschmann, H.J.: The macrocyclic and cryptate effect. 7. Influence of structural-changes on the complexation behavior of Aza crown ethers and cryptands in different solvents. Inorg. Chim. Acta 120, 125–129 (1986)CrossRefGoogle Scholar
  21. 21.
    Adams, H., Bastida, R., Fenton, D.E., Macias, A., Spey, S.E., Valencia, L.: Zinc and cadmium complexes of an 18-membered N4O2 oxaaza-Schiff base macrocycle and the corresponding reduced form. J. Chem. Soc. Dalton Trans. 23, 4131–4137 (1999)CrossRefGoogle Scholar
  22. 22.
    Lodeiro, C., Bastida, R., Bertolo, E., Macias, A., Rodriguez, A.: Coordination chemistry of copper(II) with oxaaza macrocyclic ligands. Crystal structure of a dinuclear tetramer copper(II) complex. Polyhedron 22, 1701–1710 (2003)CrossRefGoogle Scholar
  23. 23.
    Borisova, N.E., Reshetova, M.D., Ustynyuk, Y.A.: Metal-free methods in the synthesis of macrocyclic Schiff bases. Chem. Rev. 107, 46–79 (2007)CrossRefGoogle Scholar
  24. 24.
    Vigato, P.A., Tamburini, S.: Advances in acyclic compartmental ligands and related complexes. Coord. Chem. Rev. 252, 1871–1995 (2008)CrossRefGoogle Scholar
  25. 25.
    Lodeiro, C., Bastida, R., Bertolo, E., Macias, A., Rodriguez, A.: Metal complexes with four macrocyclic ligands derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,7-bis(2 ‘-formylphenyl)1,4,7-trioxaheptane. Inorg. Chim. Acta 343, 133–140 (2003)CrossRefGoogle Scholar
  26. 26.
    Zhang, J.Q., Jia, C.Y.: Synthetic strategies and applications of macrocycle molecules based on Schiff-base reaction. Chin. J. Org. Chem. 30, 1142–1155 (2010)CrossRefGoogle Scholar
  27. 27.
    Park, K.M., Yoon, I., Lee, Y.H., Lee, S.S.: Synthesis and crystal structures of S2O2-donor macrocycles and their silver(I) metallopolymers. Inorg. Chim. Acta 343, 33–40 (2003)CrossRefGoogle Scholar
  28. 28.
    Reyes-Marquez, V., Sanchez, M., Hopfl, H., Lara, K.O.: Synthesis and structural characterization of 18-, 19-, 20- and 22-membered Schiff base macrocycles. J. Incl. Phenom. Macrocycl. Chem. 65, 305–315 (2009)CrossRefGoogle Scholar
  29. 29.
    Balić, T., Marković, B., Jaźwiński, J., Matković-Čalogović, D.: Synthesis and structural characterization of new N2O2-donor Schiff base macrocycles and their silver(I) coordination polymers. Inorg. Chim. Acta 435, 283–291 (2015)CrossRefGoogle Scholar
  30. 30.
    STARe, Software 10.0, Mettler-Toledo GmbH (2009)Google Scholar
  31. 31.
    Oxford Diffraction, Oxford Difraction Ltd., Xcalibur CCD system, CRYSALIS Software system, version, (2010)Google Scholar
  32. 32.
    Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Spagna, R.: SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 38, 381–388 (2005)CrossRefGoogle Scholar
  33. 33.
    Farrugia, L.J.: WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012)CrossRefGoogle Scholar
  34. 34.
    Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)CrossRefGoogle Scholar
  35. 35.
    Spek, A.L.: PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr. A 46, 34 (1990)Google Scholar
  36. 36.
    Spek, A.L.: PLATON: a multipurpose crystallographic tool. Ultrecht University, Ultrecht (1998)Google Scholar
  37. 37.
    Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., van de Streek, J.: Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453–457 (2006)CrossRefGoogle Scholar
  38. 38.
    Mondal, R., Mandal, T.K., Mallik, A.K.: Simple synthesis of a new family of 22-to 28-membered macrocycles containing two chalcone moieties. Arkivoc 9, 95–110 (2012)Google Scholar
  39. 39.
    Dehno Khalaji, A., Hafez Ghoran, S., Gotoh, K., Ishida, H.: 2-[4-(2-formylphenoxy) butoxy] benzaldehyde. Acta Crystallogr. E67, o2484 (2011)Google Scholar
  40. 40.
    Burger, A., Ramberger, R.: Polymorphism of pharmaceuticals and other molecular-crystals II. Applicability of thermodynamic rules. Mikrochim. Acta 2, 273–316 (1979)CrossRefGoogle Scholar
  41. 41.
    Cremer, D., Pople, J.A.: General definition of ring puckering coordinates. J. Am. Chem. Soc. 97, 1354–1358 (1975)CrossRefGoogle Scholar
  42. 42.
    Ocak, M., Alp, H., Kantekin, H., Karadeniz, H., Ocak, Ü.: Ion-pair extraction of transition metal cations from aqueous media using novel N2O2-macrocyclic crown ligands. J. Incl. Phenom. Macrocycl. Chem. 60, 17–24 (2008)CrossRefGoogle Scholar
  43. 43.
    Kadarkaraisamy, M., Caple, G., Gorden, A.R., Squire, M.A., Sykes, A.G.: Large amplitude, proton- and cation-activated latch-type mechanical switches: O-protonated amides stabilized by intramolecular, low-barrier hydrogen bonds within macrocycles. Inorg. Chem. 47, 11644–11655 (2008)CrossRefGoogle Scholar
  44. 44.
    Azov, V.A., Beeby, A., Cacciarini, M., Cheetham, A.G., Diederich, F., Frei, M., Gimzewski, J.K., Gramlich, V., Hecht, B., Jaun, B., Latychevskaia, T., Lieb, A., Lill, Y., Marotti, F., Schlegel, A., Schlittler, R.R., Skinner, P.J., Seiler, P., Yamakoshi, Y.: Resorcin [4] arene cavitand-based molecular switches. Adv. Funct. Mater. 16, 147–156 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tomislav Balić
    • 1
  • Brunislav Matasović
    • 1
  • Berislav Marković
    • 1
    Email author
  • Anamarija Šter
    • 1
  • Marija Štivojević
    • 1
  • Dubravka Matković-Čalogović
    • 2
  1. 1.Department of ChemistryJosip Juraj Strossmayer University of OsijekOsijekCroatia
  2. 2.Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations