In silico design of calixarene-based arsenic acid removal agents

  • Gustavo Mondragón-Solórzano
  • Reyes Sierra-Álvarez
  • Eddie López-Honorato
  • Joaquín Barroso-FloresEmail author
Original Article


Contamination of water resources with arsenic is a worldwide challenge with an important social impact. Development of adsorptive materials with high affinity and selectivity towards arsenic is an important and ongoing challenge. The aim of this work is to study calix[n]arenes with 4, 5, 6 and 8 rings, as well as COOH, C2H4OH, SO3H, t-Bu, PO3H2 and PO4H2, upper-rim functional groups through computational chemistry models as tailor-made sequestering agents using pentavalent arsenate species (H3AsO4, H2AsO4 and HAsO4 2−). Host–guest interaction energies (E int ) were determined using Density functional theory (DFT) calculations at the M06-2X/6-31G(d,p) level of theory carried out on host–guest adducts in order to find the most suitable candidates as extracting agents for these arsenate species. Hydrogen-bond donor groups such as SO3H, PO3H2 and the hypothetical calixarene with R = PO4H2 on the upper rim of calix[n]arenes are shown to be the most suitable functional groups for encapsulating these As(V) species under study.


Calixarenes Arsenic DFT calculations Bioremediation 



The authors would like to thank UA–CONACYT (University of Arizona—Consejo Nacional de Ciencia y Tecnología) Binational Consortium for the Regional Scientific Development and Innovation for the financial support provided. The authors wish to thank Miss Citlallit Martínez for keeping our computational facilities in high quality conditions. Also to Dirección General de Tecnologías de la Información y Cómputo (DGTIC—UNAM) for granting access to their supercomputing facilities known as Miztli.


  1. 1.
    Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Cornejo, L., Dias, L.E., Cirelli, A.F., Farfán, E.M., Garrido, S., Lorenzo, L., Morgada, M.E., Olmos-Márquez, M.A., Pérez-Carrera, A.: Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci. Total Environ. 429, 107–122 (2012)CrossRefGoogle Scholar
  2. 2.
    Ortega-Guerrero, A.: Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico. J. Hydrol. 284, 26–44 (2003)CrossRefGoogle Scholar
  3. 3.
    Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M.: Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015)CrossRefGoogle Scholar
  4. 4.
    Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)CrossRefGoogle Scholar
  5. 5.
    Redshaw, C.: Coordination chemistry of the larger calixarenes. Coord. Chem. Rev. 244, 45–70 (2003)CrossRefGoogle Scholar
  6. 6.
    Shinkai, S., Mori, S., Koreishi, H., Tsubaki, T., Manabe, O.: Hexasulfonated calix[6larene derivatives: a new class of catalysts, surfactants, and host molecules. J. Am. Chem. Soc. 108, 2409–2416 (1986)CrossRefGoogle Scholar
  7. 7.
    Shinkai, S., Koreishi, H., Ueda, K., Arimura, T., Manabe, O.: Molecular design of calixarene-based uranophiles which exhibit remarkably high stability and selectivity. J. Am. Chem. Soc. 109, 6371–6376 (1987)CrossRefGoogle Scholar
  8. 8.
    Barroso-Flores, J., Silaghi-Dumitrescu, I., Petrar, P.M., Kunsági-Máté, S.: Ab initio calculations of electronic interactions in inclusion complexes of calix- and thiacalix[n]arenes and block s cations. J. Incl. Phenom. Macrocycl. Chem. 75, 39–46 (2013)CrossRefGoogle Scholar
  9. 9.
    Chennakesavulu, K., Raju, G.B., Prabhakar, S.: Studies on the adsorption of arsenic on calix[6]arene. J. Phys. Org. Chem. 23, 723–729 (2010)Google Scholar
  10. 10.
    Sayin, S., Ozcan, F., Yilmaz, M.: Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 178, 312–319 (2010)CrossRefGoogle Scholar
  11. 11.
    Qureshi, I., Memon, S., Yilmaz, M.: An excellent arsenic(V) sorption behavior of p-tert-butylcalix[8]areneoctamide impregnated resin. Comptes Rendus Chim. 13, 1416–1423 (2010)CrossRefGoogle Scholar
  12. 12.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J. V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 09, Revision B.01. Gaussian Inc. (2009)Google Scholar
  13. 13.
    Glendening, A.E. Reed, J.E. Carpenter, and F.W.: NBO Version 3.1Google Scholar
  14. 14.
    Weinhold, F.: Natural Bond Orbital Methods. In: Schleyer, P., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., Schreiner, P.R. (eds.) Encyclopedia of Computational Chemistry, pp. 1792–1811. Wiley, Madison (2002)Google Scholar
  15. 15.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gustavo Mondragón-Solórzano
    • 1
  • Reyes Sierra-Álvarez
    • 2
  • Eddie López-Honorato
    • 3
  • Joaquín Barroso-Flores
    • 1
    Email author
  1. 1.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMTolucaMexico
  2. 2.Department of Chemical and Environmental EngineeringThe University of ArizonaTucsonUSA
  3. 3.Centro de Investigación y de Estudios Avanzados del IPNRamos ArizpeMexico

Personalised recommendations