Skip to main content
Log in

Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit[7]uril and β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two new homotritopic guests based on tris(benz)imidazolium salts with adamantane binding sites were prepared. NMR and calorimetric titration experiments revealed that each of the three sites independently binds β-cyclodextrin (β-CD) or cucurbit[7]uril (CB7) units to form binary host–guest complexes with 1:3 stoichiometry. The association constants for the single binding site for β-CD and CB7 were determined using titration calorimetry and are in the order of 105 and 109−10 dm3 mol−1, respectively. In addition, both guests were able to form ternary systems with β-CD and CB7 in ratios of 1:1:2 and 1:2:1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xing, M., Yanli, Z.: Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 115, 7794–7839 (2015)

    Article  Google Scholar 

  2. Li, M., Zhou, C., Quanzhu, Y., Xiaogang, Y., Chao, Z., Liqiong, L.: Polymeric supramolecular materials and their biomedical applications. Curr. Org. Chem. 18, 1937–1947 (2014)

    Article  Google Scholar 

  3. Wang, D., Tong, G., Dong, R., Zhou, Y., Shen, J., Zhu, X.: Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem. Commun. 50, 11994–12017 (2014)

    Article  CAS  Google Scholar 

  4. Dong, R., Zhou, Y., Zhu, X.: Supramolecular dendritic polymers: from synthesis to applications. Acc. Chem. Res. 47, 2006–2016 (2014)

    Article  CAS  Google Scholar 

  5. Hu, J., Liu, S.: Engineering responsive polymer building blocks with host–guest molecular recognition for functional applications. Acc. Chem. Res. 47, 2084–2095 (2014)

    Article  CAS  Google Scholar 

  6. Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug. Deliv. Rev. 65, 1215–1233 (2013)

    Article  CAS  Google Scholar 

  7. Kejik, Z., Kaplanek, R., Briza, T., Kralova, J., Martasek, P., Kral, V.: Supramolecular approach for target transport of photodynamic anticancer agents. Supramol. Chem. 24, 106–116 (2012)

    Article  CAS  Google Scholar 

  8. De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P., Meijer, E.W.: Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009)

    Article  Google Scholar 

  9. Dong, S., Bo, Z., Wang, F., Huang, F.: Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc. Chem. Res. 47, 1982–1994 (2014)

    Article  CAS  Google Scholar 

  10. Charlot, A., Velty, R.A.: Novel hyaluronan-based supramolecular assemblies stabilized by multivalent specific interactions: rheological behavior in aqueous solution. Macromolecules 40, 9555–9563 (2007)

    Article  CAS  Google Scholar 

  11. Layre, A.M., Volet, G., Wintgens, V., Amiel, C.: Associative network based on cyclodextrin polymer: a model system for drug delivery. Biomacromolecules 10, 3283–3289 (2009)

    Article  CAS  Google Scholar 

  12. Li, L., Guo, X., Wang, J., Liu, P., Prud’homme, R.K., May, B.L., Lincoln, S.F.: Polymer networks assembled by host—guest inclusion between adamantyl and β-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules 41, 8677–8681 (2008)

    Article  CAS  Google Scholar 

  13. Heyden, A.V., Wilczewski, M., Labbe, P., Auzely, R.: Multilayer films based on host–guest interactions between biocompatible polymers. Chem. Commun. 3220–3222 (2006)

  14. Charlot, A., Velty, R.A.: Synthesis of novel supramolecular assemblies based on hyaluronic acid derivatives bearing bivalent β-cyclodextrin and adamantane moieties. Macromolecules 40, 1147–1158 (2007)

    Article  CAS  Google Scholar 

  15. Li, C., Luo, G.F., Wang, H.Y., Zhang, J., Gong, Y.H., Cheng, S.X.: Host–guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J. Phys. Chem. 115, 17651–17659 (2011)

    CAS  Google Scholar 

  16. Bistri, O., Mazeau, K., Velty, R.A., Sollogoub, M.: A hydrophilic cyclodextrin duplex forming supramolecular assemblies by physical cross-linking of a biopolymer. Chem. Eur. J. 13, 8847–8857 (2007)

    Article  CAS  Google Scholar 

  17. Nally, R., Isaacs, L.: Toward supramolecular polymers incorporating double cavity cucurbituril hosts. Tetrahedron 65, 7249–7258 (2009)

    Article  CAS  Google Scholar 

  18. Liu, Y., Fang, R., Tan, X., Wang, Z., Zhang, X.: Supramolecular polymerization at low monomer concentrations: enhancing intermolecular interactions and suppressing cyclization by rational molecular design. Chem. Eur. J. 18, 15650–15654 (2012)

    Article  CAS  Google Scholar 

  19. Galantini, L., Jover, A., Leggio, C., Meijide, F., Pavel, N.V., Tellini, V.H.S., Tato, J.V., Tortolini, C.: Early stages of formation of branched host−guest supramolecular polymers. J. Phys. Chem. B 112, 8536–8541 (2008)

    Article  CAS  Google Scholar 

  20. Leggio, C., Anselmi, M., Nola, A.D., Galantini, L., Jover, A., Meijide, F., Pavel, N.V., Tellini, V.H.S., Tato, J.V.: Study on the structure of host–guest supramolecular polymers. Macromolecules 40, 5899–5906 (2007)

    Article  CAS  Google Scholar 

  21. Hasegawa, Y., Miyauchi, M., Takashima, Y., Harada, A.: Supramolecular polymers formed from β-cyclodextrins dimer linked by poly (ethylene glycol) and guest dimers. Macromolecules 38, 3724–3730 (2005)

    Article  CAS  Google Scholar 

  22. Krishnan, R., Gopidas, K.: β-Cyclodextrin as an end-to-end connector. J. Phys. Chem. Lett. 2, 2094–2098 (2011)

    Article  CAS  Google Scholar 

  23. Ohga, K., Takashima, Y., Takahashi, H., Kawaguchi, Y., Yamaguchi, H., Harada, A.: Preparation of supramolecular polymers from a cyclodextrin dimer and ditopic guest molecules: control of structure by linker flexibility. Macromolecules 38, 5897–5904 (2005)

    Article  CAS  Google Scholar 

  24. Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.: Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives. Tetrahedron 64, 8355–8361 (2008)

    Article  CAS  Google Scholar 

  25. Bohm, I., Isenbugel, K., Ritter, H., Branscheid, R., Kolb, U.: Cyclodextrin and adamantane host-guest interactions of modified hyperbranched poly(ethylene imine) as mimetics for biological membranes. Angew. Chem. Int. Ed. 50, 7896–7899 (2011)

    Article  Google Scholar 

  26. Schmidt, B.V.K.J., Rudolph, T., Hetzer, M., Ritter, H., Schacher, F.H., Barner-Kowollik, C.: Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym. Chem. 3, 3139–3145 (2012)

    Article  CAS  Google Scholar 

  27. Bednaříková, T., Tošner, Z., Horský, J., Jindřich, J.: Synthesis of C 3 -symmetric tri(alkylamino) guests and their interaction with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 81, 141–152 (2015)

    Article  Google Scholar 

  28. Takashima, Y., Yuting, Y., Otsubo, M., Yamaguchi, H., Harada, A.: Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties. Beilstein J. Org. Chem. 8, 1594–1600 (2012)

    Article  CAS  Google Scholar 

  29. Osman, S.K., Brandl, F.P., Zayed, G.M., Tebmer, J.K., Gopferich, A.M.: Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer 52, 4806–4812 (2011)

    Article  CAS  Google Scholar 

  30. Koopmans, C., Ritter, H.: Formation of physical hydrogels via host–guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules 41, 7418–7422 (2008)

    Article  CAS  Google Scholar 

  31. Crini, G.: Review: a history of cyclodextrins. Hist. Cyclodext. Chem. Rev. 114, 10940–10975 (2014)

    Article  CAS  Google Scholar 

  32. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  33. Kraus, T.: Modified cyclodextrins with pendant cationic and anionic moieties as hosts for highly stable inclusion complexes and molecular recognition. Curr. Org. Chem. 15, 802–814 (2011)

    Article  CAS  Google Scholar 

  34. Bricout, H., Hapiot, F., Ponchel, A., Tilloy, S., Monflier, F.: Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes. Sustainability 1, 924–945 (2009)

    Article  CAS  Google Scholar 

  35. Brewster, M.E., Loftsson, T.: The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie 57, 94–101 (2002)

    CAS  Google Scholar 

  36. Hattori, K., Ikeda, H.: Modification reactions of cyclodextrins and the chemistry of modified cyclodextrins. In: Dodziuk, H. (ed.) Cyclodextrins and their complexes, pp. 31–64. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  37. Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 619–629 (2009)

  38. Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2053–2062 (2014)

    Article  Google Scholar 

  39. Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)

    Article  CAS  Google Scholar 

  40. Rekharsky, M.V., Mori, T., Yang, C., Ko, Y.H., Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A.E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M.K., Kim, K., Inoue, Y.: A synthetic host–guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation. Proc. Natl. Acad Sci. USA 104, 20737–20742 (2007)

    Article  CAS  Google Scholar 

  41. Moghaddam, S., Yang, C., Rekharsky, M.V., Ko, Y.H., Kim, K., Inoue, Y., Gilson, M.K.: New ultrahigh affinity host–guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J. Am. Chem. Soc. 133, 3570–3581 (2011)

    Article  CAS  Google Scholar 

  42. Cao, L., Šekutor, M., Zavalij, P.Y., Mlinarić-Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril·guest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed. 53, 988–993 (2014)

    Article  CAS  Google Scholar 

  43. Agrigento, P., Al-Amsyar, S.M., Soree, B., Taherimehr, M., Gruttadauria, M., Aprile, C., Pescarmona, P.P.: Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates. Catal. Sci. Tech. 4, 1598–1607 (2014)

    Article  CAS  Google Scholar 

  44. Ghosh, D., Lee, J.Y., Liu, C.Y., Chiang, Y.H., Lee, H.M.: Direct C–H arylations of unactivated arenes catalyzed by amido-functionalized imidazolium salts. Adv. Synth. Catal. 356, 406–410 (2014)

    Article  CAS  Google Scholar 

  45. Byeun, A., Baek, K., Han, M.S., Lee, S.: Palladium-catalyzed C–S bond formation by using N-amido imidazolium salts as ligands. Tetrahedron Lett. 54, 6712–6715 (2013)

    Article  CAS  Google Scholar 

  46. Myles, L., Gore, R.G., Gathergood, N., Connon, S.J.: A new generation of aprotic yet Brønsted acidic imidazolium salts: low toxicity, high recyclability and greatly improved activity. Green Chem. 15, 2740–2746 (2013)

    Article  CAS  Google Scholar 

  47. Li, H., Chen, J., Hua, L., Qiao, Y., Yu, Y., Pan, Z., Yang, H., Hou, Z.: Polyoxometalate and copolymer-functionalized ionic liquid catalyst for esterification. Pure Appl. Chem. 84, 541–551 (2012)

    Article  CAS  Google Scholar 

  48. Wang, Y., Robinson, G.H.: N-Heterocyclic carbene—main-group chemistry: a rapidly evolving field. Inorg. Chem. 53, 11815–11832 (2014)

    Article  CAS  Google Scholar 

  49. Hopkinson, M.N., Richter, C., Schedler, M., Glorius, F.: An overview N-heterocyclic carbenes. Nature 510, 485–496 (2014)

    Article  CAS  Google Scholar 

  50. Riener, K., Haslinger, S., Raba, A., Hogerl, M.P., Cokoja, M., Herrmann, W.A., Kuhn, F.E.: Chemistry of iron N-heterocyclic carbene complexes: syntheses, structures, reactivities, and catalytic applications. Chem. Rev. 114, 5215–5272 (2014)

    Article  CAS  Google Scholar 

  51. Chauhan, P., Enders, D.: N-Heterocyclic carbene catalyzed activation of esters: a new option for asymmetric domino reactions. Angew. Chem. Int. Ed. 53, 1485–1487 (2014)

    Article  CAS  Google Scholar 

  52. Ranganath, K.V.S., Onitsuka, S., Kumar, A.K., Inanaga, J.: Recent progress of N-heterocyclic carbenes in heterogeneous catalysis. Catal. Sci. Tech. 3, 2161–2181 (2013)

    Article  CAS  Google Scholar 

  53. Rovis, T., Nolan, S.P.: Stable carbenes: from ‘laboratory curiosities’ to catalysis mainstays. Synlett 24, 1188–1189 (2013)

    Article  CAS  Google Scholar 

  54. Černochová, J., Branná, P., Rouchal, M., Kulhánek, P., Kuřitka, I., Vícha, R.: Determination of intrinsic binding modes by mass spectrometry: gas-phase behavior of adamantylated bisimidazolium guests complexed to cucurbiturils. Chem. Eur. J. 18, 13633–13637 (2012)

    Article  Google Scholar 

  55. Zhao, N., Liu, L., Biedermann, F., Scherman, O.A.: Binding studies on CB[6] with a series of 1-alkyl-3-methylimidazolium ionic liquids in an aqueous system. Chem. Asian. J. 5, 530–537 (2010)

    Article  CAS  Google Scholar 

  56. Schneider, H.-J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  57. Patiny, L., Borel, A.: ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internal Funding Agency of the Tomas Bata University in Zlín under Grant IGA/FT/2015/005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Vícha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S.G., Prucková, Z., Rouchal, M. et al. Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit[7]uril and β-cyclodextrin. J Incl Phenom Macrocycl Chem 84, 11–20 (2016). https://doi.org/10.1007/s10847-015-0577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0577-9

Keywords

Navigation