Skip to main content
Log in

The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Quantitative structure–property relationship modelling of the stability constants (log K) for the 1:1 (M:L) complexes of metal ions (M = Li+, Na+, K+, Be2+, Al3+, Ga3+, In3+, VO2+, Fe3+, Th4+, NpO2 +, Am3+) with structurally diverse organic ligands in aqueous solution was performed using ensemble multiple linear regression (eMLR) analysis, support vector machines, associative neural networks and substructural molecular fragments’ descriptors. The models were validated with cross-validation procedures and with complementary external test set. For eMLR in the 5-fold cross-validation, root-mean squared error of log K varies from 0.49 (Li+) to 2.30 (In3+), and it is comparable with the systematic errors in experimental data. Designed predictor for end users implements consensus models together with the estimation of their applicability domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Applicability domain

ASNN:

Associative neural networks

CM:

Consensus model

5CV:

5-Fold cross-validation

eMLR:

Ensemble multiple linear regression

FMF:

Forecast by molecular fragments

FVS:

Forward variable selection

ISIDA:

In SIlico design and data analysis

L:

Organic ligand

LOO:

Leave-one-out

M:

Metal ion

MAE :

Mean absolute error

Q :

Leave-one-out cross–validation correlation coefficient

QSPR:

Quantitative structure–property relationships

R 2 det :

Squared coefficient of determination

RMSE :

Root-mean squared error

SDF:

Structure data file

SMF:

Substructural molecular fragments

SVM:

Support vector machines

References

  1. Ronconi, L., Sadler, P.J.: Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coord. Chem. Rev. 252, 2239–2277 (2008)

    Article  CAS  Google Scholar 

  2. van Rijt, S.H., Sadler, P.J.: Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov. Today 14(23/24), 1089–1097 (2009)

    Article  Google Scholar 

  3. Bruijnincx, P.C.A., Sadler, P.J.: New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 12, 197–206 (2008)

    Article  CAS  Google Scholar 

  4. Di Bernardo, P., Melchior, A., Portanova, R., Tolazzi, M., Zanonato, P.L.: Complex formation of N-donor ligands with group 11 monovalent ions. Coord. Chem. Rev. 252, 1270–1285 (2008)

    Article  Google Scholar 

  5. Choppin, G.R., Thakur, P., Mathur, J.N.: Complexation thermodynamics and the structure of the binary and the ternary complexes of Am 3+ , Cm 3+ and Eu 3+ with IDA and EDTA+ IDA. Inorg. Chim. Acta 360, 1859–1869 (2007)

    Article  CAS  Google Scholar 

  6. Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252(10), 1093–1107 (2008)

    Article  CAS  Google Scholar 

  7. Thakur, P., Pathak, P.N., Choppin, G.R.: Complexation thermodynamics and the formation of the binary and the ternary complexes of tetravalent plutonium with carboxylate and amino carboxylate ligands in aqueous solution of high ionic strength. Inorg. Chim. Acta 362, 179–184 (2009)

    Article  CAS  Google Scholar 

  8. Dimmock, P.W., Warwick, P., Robbins, R.A.: Approaches to predicting stability constants. Analyst 120(8), 2159–2170 (1995)

    Article  CAS  Google Scholar 

  9. Pletnev, I.V., Zernov, V.V.: Classification of metal ions according to their complexing properties: a data-driven approach. Analyt. Chim. Acta. 455(1), 131–142 (2002)

    Article  CAS  Google Scholar 

  10. Carbonaro, R.F., Atalay, Y.B., Di Toro, D.M.: Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charged oxygen donor atoms. Geochim. Cosmochim. Acta 75, 2499–2511 (2011)

    Article  CAS  Google Scholar 

  11. Varnek, A., Solov’ev, V.: Quantitative structure–property relationships in solvent extraction and complexation of metals. In: Sengupta, A.K., Moyer, B.A. (eds.) Ion Exchange and Solvent Extraction, a Series of Advances, pp. 319–358. CRC Press, Taylor and Francis Group, Boca Raton (2009)

    Chapter  Google Scholar 

  12. Ghasemi, J.B., Salahinejad, M., Rofouei, M.K.: Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol. Chem. 23(9), 615–631 (2011)

    Article  CAS  Google Scholar 

  13. Casasnovas, R., Ortega-Castro, J., Donoso, J., Frau, J., Munoz, F.: Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine–copper(II) complexes and their biological implications in AGE inhibition. Phys. Chem. Chem. Phys. 15, 16303–16313 (2013)

    Article  CAS  Google Scholar 

  14. Gutten, O., Rulíšek, L.: Predicting the stability constants of metal-ion complexes from first principles. Inorg. Chem. 52, 10347–10355 (2013)

    Article  CAS  Google Scholar 

  15. Solov’ev, V.P., Varnek, A.A.: Structure–property modeling of metal binders using molecular fragments. Russ. Chem. Bull. 53(7), 1434–1445 (2004)

    Article  Google Scholar 

  16. Toropov, A.A., Toropova, A.P., Nesterova, A.I., Nabiev, O.M.: QSPR modeling of complex stability by correlation weighing of the topological and chemical invariants of molecular graphs. Russ. J. Coord. Chem. 30(9), 611–617 (2004)

    Article  CAS  Google Scholar 

  17. Tetko, I.V., Solov’ev, V.P., Antonov, A.V., Yao, X.J., Fan, B.T., Hoonakker, F., Fourches, D., Lachiche, N., Varnek, A.: Benchmarking of linear and non-linear approaches for quantitative structure–property relationship studies of metal complexation with organic ligands. J. Chem. Inf. Model. 46(2), 808–819 (2006)

    Article  CAS  Google Scholar 

  18. Svetlitski, R., Lomaka, A., Karelson, M.: QSPR modelling of lanthanide-organic complex stability constants. Sep. Sci. Technol. 41(1), 197–216 (2006)

    Article  CAS  Google Scholar 

  19. Solov’ev, V.P., Kireeva, N.V., Tsivadze, A.Y., Varnek, A.A.: Structure–property modelling of complex formation of strontium with organic ligands in water. J. Struct. Chem. 47(2), 298–311 (2006)

    Article  Google Scholar 

  20. Varnek, A., Fourches, D., Kireeva, N., Klimchuk, O., Marcou, G., Tsivadze, A., Solov’ev, V.: Computer-aided design of new metal binders. Radiochim. Acta 96(8), 505–511 (2008)

    CAS  Google Scholar 

  21. Cabaniss, S.E.: Quantitative structure–property relationships for predicting metal binding by organic ligands. Environ. Sci. Technol. 42(14), 5210–5216 (2008)

    Article  CAS  Google Scholar 

  22. Wang, X.Y., Wang, H.L.: QSPR study of crown ether complexes with K+ by density functional theory. Xiangtan Daxue Ziran Kexue Xuebao 30(3), 86–93 (2008)

    CAS  Google Scholar 

  23. Ghasemi, J., Saaidpour, S.: QSPR modeling of stability constants of diverse 15-crown-5 ethers complexes using best multiple linear regression. J. Incl. Phenom. Macrocycl. Chem. 60(3–4), 339–351 (2008)

    Article  CAS  Google Scholar 

  24. Ghasemi, J.B., Ahmadi, S., Ayati, M.: QSPR modeling of stability constants of the Li-hemispherands complexes using MLR: a theoretical host-guest study. Macroheterocycles. 3(4), 234–242 (2010)

    CAS  Google Scholar 

  25. Ghasemi, J.B., Rofouei, M.K., Salahinejad, M.: A quantitative structure–property relationships study of the stability constant of crown ethers by molecular modelling: new descriptors for lariat effect. J. Incl. Phenom. Macrocycl. Chem. 70, 37–47 (2011)

    Article  CAS  Google Scholar 

  26. Li, Y., Su, L., Zhang, X., Huang, X., Zhai, H.: Prediction of association constants of cesium chelates based on Uniform design optimized support vector machine. Chemom. Intell. Lab. Syst. 105(1), 106–113 (2011)

    Article  CAS  Google Scholar 

  27. Mousavi, A.: Predicting mercury(II) binding by organic ligands: a chemical model of therapeutic and environmental interests. Environ. Forensics 12(4), 327–332 (2011)

    Article  CAS  Google Scholar 

  28. Garkani-Nejad, Z., Ahmadvand, M.: Simultaneous estimation of stability constants of Mg, Ba, Ca, and Sr complexes using a small subset of molecular descriptors. J. Coord. Chem. 64(14), 2466–2479 (2011)

    Article  CAS  Google Scholar 

  29. Solov’ev, V., Sukhno, I., Buzko, V., Polushin, A., Marcou, G., Tsivadze, A., Varnek, A.: Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. J. Incl. Phenom. Macrocycl. Chem. 72(3–4), 309–321 (2012)

    Article  Google Scholar 

  30. Solov’ev, V.P., Tsivadze, A.Y., Varnek, A.A.: New approach for accurate QSPR modeling of metal complexation: application to stability constants of complexes of lanthanide ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with organic ligands in water. Macroheterocycles 5(4–5), 404–410 (2012)

    Article  Google Scholar 

  31. Solov’ev, V., Marcou, G., Tsivadze, A.Y., Varnek, A.: Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO22+ with organic ligands: QSPR ensemble modeling of stability constants. Ind. Eng. Chem. Res. 51(41), 13482–13489 (2012)

    Article  Google Scholar 

  32. Ahmadi, S.: Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 57–66 (2012)

    Article  CAS  Google Scholar 

  33. Daraei, H., Irandoust, M., Ghasemi, J.B., Kurdian, A.R.: QSPR probing of Na+ complexation with 15-crown-5 ethers derivatives using artificial neural network and multiple linear regression. J. Incl. Phenom. Macrocycl. Chem. 72(3–4), 423–435 (2012)

    Article  CAS  Google Scholar 

  34. Mousavi, A.: A chemical model for predicting zinc(II) binding by organic ligands as hypothetical therapeutic agents. Med. Chem. Res. 22(1), 234–239 (2013)

    Article  CAS  Google Scholar 

  35. Solov’ev, V.P., Kireeva, N., Tsivadze, A.Y., Varnek, A.: QSPR ensemble modelling of alkaline-earth metal complexation. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 159–171 (2013)

    Article  Google Scholar 

  36. Ahmadi, S., Babaee, E., khazaei, M.R.: Application of self organizing maps and GA-MLR for the estimation of stability constant of 18-crown-6 ether derivatives with sodium cation. J. Incl. Phenom. Macrocycl. Chem. 79(1–2), 141–149 (2014)

    Article  CAS  Google Scholar 

  37. Solov’ev, V., Varnek, A., Tsivadze, A.: QSPR ensemble modelling of the 1:1 and 1:2 complexation of Co2+, Ni2+, and Cu2+ with organic ligands. relationships between stability constants. J. Comput. Aided Mol. Des. 28(5), 549–564 (2014)

    Article  Google Scholar 

  38. Kiani-Anbouhi, R., Ganjali, M.R., Norouzi, P.: Application of QSPR for prediction of the complexation stabilities of Sm(III) with ionophores applied in lanthanoid sensors. J. Incl. Phenom. Macrocycl. Chem. 81, 441–450 (2015)

    Article  CAS  Google Scholar 

  39. Shi, Z.G., McCullough, E.A.: A computer-simulation—statistical procedure for predicting complexation equilibrium-constants. J. Incl. Phenom. Mol. Recognit. Chem. 18(1), 9–26 (1994)

    Article  CAS  Google Scholar 

  40. Gakh, A.A., Sumpter, B.G., Noid, D.W., Sachleben, R.A., Moyer, B.A.: Prediction of complexation properties of crown ethers using computational neural networks. J. Incl. Phenom. Mol. Recognit. Chem. 27(3), 201–213 (1997)

    Article  CAS  Google Scholar 

  41. Solov’ev, V.P., Varnek, A.A., Wipff, G.: Modeling of ion complexation and extraction using substructural molecular fragments. J. Chem. Inf. Comput. Sci. 40(3), 847–858 (2000)

    Article  Google Scholar 

  42. Varnek, A.A., Wipff, G., Solov’ev, V.P., Solotnov, A.F.: Assessment of the macrocyclic effect for the complexation of crown-ethers with alkali cations using the substructural molecular fragments method. J. Chem. Inf. Comput. Sci. 42(4), 812–829 (2002)

    Article  CAS  Google Scholar 

  43. Toropov, A.A., Toropova, A.P.: QSPR modeling of stability of complexes of adenosine phosphate derivatives with metals absent from the complexes of the teaching access. Russ. J. Coord. Chem. 27(8), 574–578 (2001)

    Article  CAS  Google Scholar 

  44. Toropov, A.A., Toropova, A.P.: QSPR modeling of complex stability by optimization of correlation weights of the hydrogen bond index and the local graph invariants. Russ. J. Coord. Chem. 28(12), 877–880 (2002)

    Article  CAS  Google Scholar 

  45. Raevskii, O.A., Sapegin, A.M., Chistyakov, V.V., Solov’ev, V.P., Zefirov, N.S.: Formation of models of structure-complexability interrelation. Koord. Khim. (Rus.) 16(9), 1175–1184 (1990)

    CAS  Google Scholar 

  46. Milicevic, A., Raos, N.: Estimation of stability constants of copper(II) complexes with α-amino acids using connectivity index 3χv. common model for the binary and ternary complexes. Chin. J. Chem. 29, 1800–1804 (2011)

    Article  CAS  Google Scholar 

  47. Kiani-Anbouhi, R., Ganjali, M.R., Norouzi, P.: Prediction of the complexation stabilities of La3+ ion with ionophores applied in lanthanoid sensors. J. Incl. Phenom. Macrocycl. Chem. 78, 325–336 (2014)

    Article  CAS  Google Scholar 

  48. Qi, Y.-H., Zhang, Q.-Y., Xu, L.: Correlation analysis of the structures and stability constants of gadolinium(III) complexes. J. Chem. Inf. Comput. Sci. 42(6), 1471–1475 (2002)

    Article  CAS  Google Scholar 

  49. Pettit, G., Pettit, L.: IUPAC Stability Constants Database. http://www.acadsoft.co.uk/. (2012) Accessed 21 August 2014

  50. Solov’ev, V.P., Varnek, A.A.: ISIDA (In silico design and data analysis) program. http://infochim.u-strasbg.fr/spip.php?rubrique53 http://vpsolovev.ru/programs/. (2008–2014) Accessed 21 Aug 2014

  51. Solov’ev, V.P., Varnek, A.A.: EdChemS (Editor of Chemical Structures). http://infochim.u-strasbg.fr/spip.php?rubrique51 http://vpsolovev.ru/programs/. (2008–2014) Accessed 21 Aug 2014

  52. Solov’ev, V.P., Varnek, A.A.: EdiSDF (Editor of structure—data files). http://infochim.u-strasbg.fr/spip.php?rubrique52 http://vpsolovev.ru/programs/. (2008–2014) Accessed 21 Aug 2014

  53. Varnek, A., Fourches, D., Hoonakker, F., Solovev, V.P.: Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aid. Mol. Des. 19(9–10), 693–703 (2005)

    Article  CAS  Google Scholar 

  54. Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, C., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I.V., Marcou, G.: ISIDA—platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Comput.-Aided Drug Des. 4(3), 191–198 (2008)

    Article  CAS  Google Scholar 

  55. Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. Alkali metal complexes of ethylenediaminetetraacetate nitrilotriacetate, diphosphate, and tripolyphosphate in aqueous solution. Anal. Chem. 57(14), 2956–2960 (1985)

    Article  CAS  Google Scholar 

  56. Harju, L.: Determination of stability constants of alkali metal ion complexes of NTA from spectrophotometric data. Finn. Chem. Lett. 6, 235–238 (1985)

    Google Scholar 

  57. Fronczek, F.R., Gandour, R.D., Fyles, T.M., Hocking, P.J., McDermid, S.J., Wotton, P.D.: Polycarboxylate crown ethers from meso-tartaric acid. Can. J. Chem. 69(1), 12–19 (1991)

    Article  CAS  Google Scholar 

  58. Behr, J.-P., Lehn, J.-M., Vierling, P.: Stable ammonium cryptates of chiral macrocyclic receptor molecules bearing amino-acid side-chains. J. Chem. Soc. Chem. Commun. 16, 621–623 (1976)

    Article  Google Scholar 

  59. Dubey, S.N., Singh, A., Puri, D.M.: A study in the complex formation of iminodiacetic acid and nitrilotriacetic acid with aluminium, chromium and beryllium ions. J. Inorg. Nucl. Chem. 43(2), 407–409 (1981)

    Article  CAS  Google Scholar 

  60. Mishra, S.K., Mishra, A.P., Yadava, K.L.: Study of mixed ligand complexes of Hg(II), Be(II) and Cu(II) by paper electrophoresis. M-nitrilotriacetate-adenine systems. Rev. Roum. Chim. 34(9/10), 1877–1885 (1989)

    CAS  Google Scholar 

  61. Rajan, K.S., Mainer, S., Rajan, N.L., Davis, J.M.: Studies on the chelation of aluminum for neurobiological application. J. Inorg. Biochem. 14(4), 339–350 (1981)

    Article  CAS  Google Scholar 

  62. Aikens, D.A., Bahbah, F.J.: Potentiometric characterization of aluminum aminopolycarboxylate chelonates. Anal. Chem. 39(6), 646–649 (1967)

    Article  CAS  Google Scholar 

  63. Harris, W.R., Martell, A.E.: Aqueous complexes of gallium(III). Inorg. Chem. 15(3), 713–720 (1976)

    Article  CAS  Google Scholar 

  64. Delgado, R., Figueira, M.D.C., Quintino, S.: Redox method for the determination of stability constants of some trivalent metal complexes. Talanta 45(2), 451–462 (1997)

    Article  CAS  Google Scholar 

  65. Taliaferro, C.H., Motekaitis, R.J., Martell, A.E.: New multidentate ligands. 22. N, N’-dipyridoxylethylenediamine-N, N’-diacetic acid: a new chelating ligand for trivalent metal ions. Inorg. Chem. 23(9), 1188–1192 (1984)

    Article  Google Scholar 

  66. Ma, R., Motekaitis, R.J., Martell, A.E.: Stability of metal ion complexes of N, N’-bis(2-hydroxybenzyl)ethylenediamine-N,N’-diacetic acid. Inorg. Chim. Acta. 224(1–2), 151–155 (1994)

    Article  CAS  Google Scholar 

  67. Mont, G.E., Martell, A.E.: Equilibria involving the formation, hydrolysis, and olation of oxovanadium(IV) chelates in aqueous solution. J. Am. Chem. Soc. 88(7), 1387–1393 (1966)

    Article  CAS  Google Scholar 

  68. Chaberek Jr, S., Gustafson, R.L., Courtney, R.C., Martell, A.E.: Hydrolytic tendencies of metal chelate compounds. III. Oxometal ions. J. Am. Chem. Soc. 81(3), 515–519 (1959)

    Article  CAS  Google Scholar 

  69. Field, T.B., McCourt, J.L., McBryde, W.A.E.: Composition and stability of iron and copper citrate complexes in aqueous solution. Can. J. Chem. 52(17), 3119–3124 (1974)

    Article  CAS  Google Scholar 

  70. Ramamoorthy, S., Manning, P.G.: Formation and stabilities of quaternary complexes of Fe3+ in solutions of phosphate, fulvate and simple carboxylate ligands. Inorg. Nucl. Chem. Lett. 10(1), 109–114 (1974)

    Article  CAS  Google Scholar 

  71. Singh, R.K., Saxena, M.C.: Formation constants of mixed ligand complexes of uranyl 2+ and thorium 4+ with complexones and oxygen donor ligands. Indian J. Chem. 29A(8), 822–824 (1990)

    CAS  Google Scholar 

  72. Kumok, V.N.: Stability of complexes of thorium with phenol ligands. Radiokhimiya 20(5), 691–694 (1978)

    CAS  Google Scholar 

  73. Stepanov, A.V.: Comparative stability of complexes of yttrium and some rare-earth and actinide elements with anions of oxalic, citric, ethylenediaminetetraacetic, and 1,2-cyclohexanediaminetetraacetic acids. Zh. Neorg. Khim. 16(11), 2981–2985 (1971)

    CAS  Google Scholar 

  74. Ohyoshi, E., Ohyoshi, A.: A study of complexes with a polybasic acid: am(III) citrate complexes. J. Inorg. Nucl. Chem. 33(12), 4265–4273 (1971)

    Article  CAS  Google Scholar 

  75. Chang, C.-C., Lin, C.-J.: LIBSVM—a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. (2014) Accessed 21 Aug 2014

  76. Tetko, I.V., Kovalishyn, V.V.: Virtual computational chemistry laboratory. Associative neural network (ASNN). http://www.vcclab.org/lab/asnn/. (2014) Accessed 21 Aug 2014

  77. Muller, P.H., Neumann, P., Storm, R.: Tafeln der Mathematischen Statistik. VEB Fachbuchverlag, Leipzip (1979)

    Google Scholar 

  78. Tetko, I.V.: Associative neural network. Neural Process. Lett. 16(2), 187–199 (2002)

    Article  Google Scholar 

  79. Tetko, I.V.: Neural network studies. 4. Introduction to associative neural networks. J. Chem. Inf. Comp. Sci. 42(3), 717–728 (2002)

    Article  CAS  Google Scholar 

  80. Tetko, I.V., Tanchuk, V.Y.: Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comp. Sci. 42(5), 1136–1145 (2002)

    Article  CAS  Google Scholar 

  81. Tollenaere, T.: SuperSAB: fast adaptive back propagation with good scaling properties. Neural Netw. 3, 561–573 (1990)

    Article  Google Scholar 

  82. Fahlman, S.E.: An empirical study of learning speed in back-propagation networks. Carnegie Mellon University, Pittsburgh (1988)

    Google Scholar 

  83. Tetko, I.V.: Virtual computational chemistry laboratory. http://www.vcclab.org/lab/asnn/training.html. (2001–2011) Accessed 21 Aug 2014

  84. Ruggiu, F., Solov’ev, V., Marcou, G., Horvath, D., Graton, J., Le Questel, J.-Y., Varnek, A.: Individual hydrogen-bond strength QSPR modelling with ISIDA local descriptors: a step towards polyfunctional molecules. Mol. Inf. 33(6–7), 477–487 (2014)

    Article  CAS  Google Scholar 

  85. Solovev, V., Oprisiu, I., Marcou, G., Varnek, A.: Quantitative structure–property relationship (QSPR) modeling of normal boiling point temperature and composition of binary azeotropes. Ind. Eng. Chem. Res. 50(24), 14162–14167 (2011)

    Article  CAS  Google Scholar 

  86. Solov’ev, V.P.: SMF (substructural molecular fragments). Descriptors for QSPR modeling. http://vpsolovev.ru/programs/. (2014) Accessed 21 Aug 2014

  87. Yamada, H., Hayashi, H., Yasui, T.: Utility of 1-octanol/octane mixed solvents for the solvent extraction of aluminum(III), gallium(III), and indium(III) with 8-quinolinol. Anal Sci. (Jpn.) 22(3), 371–376 (2006)

    Article  CAS  Google Scholar 

  88. Sasaki, T., Kubo, S., Kubota, T., Takagi, I., Moriyama, H.: Complex formation of lanthanides(III) and actinides(III) with dicarboxylates containing soft donor groups. J. Alloy. Compd. 408–412, 1283–1286 (2006)

    Article  Google Scholar 

  89. Jurchen, K.M.C., Raymond, K.N.: A bidentate terephthalamide ligand, TAMmeg, as an entry into terephthalamide-containing therapeutic iron chelating agents. Inorg. Chem. 45(6), 2438–2447 (2006)

    Article  CAS  Google Scholar 

  90. Jurchen, K.M.C., Raymond, K.N.: Terephthalamide-containing analogues of TREN-Me-3,2-HOPO. Inorg. Chem. 45(3), 1078–1090 (2006)

    Article  CAS  Google Scholar 

  91. Dertz, E.A., Xu, J., Raymond, K.N.: Tren-based analogues of bacillibactin: structure and stability. Inorg. Chem. 45(14), 5465–5478 (2006)

    Article  CAS  Google Scholar 

  92. Pessoa, J.C., Marcao, S., Correia, I., Goncalves, G., Dornyei, A., Kiss, T., Jakusch, T., Tomaz, I., Castro, M.M.C.A., Avecilla, F.: Vanadium (IV and V) complexes of reduced schiff bases derived from the reaction of aromatic o-hydroxyaldehydes and diamines containing carboxyl groups. Eur. J. Inorg. Chem. 2006(18), 3595–3606 (2006)

    Article  Google Scholar 

  93. Solov’ev, V.P.: FMF (forecast by molecular fragments). Predictions of metal-ligand stability constants. http://vpsolovev.ru/programs/. (2014) Accessed 21 Aug 2014

Download references

Acknowledgments

We gratefully acknowledge Prof. L. Pettit for the English language improvement of the paper. V.S. thanks Dr. G. Pettit and Prof. L. Pettit from Academic Software for providing new version of the IUPAC Stability Constants Database.

Supporting Information

1). Structure data file Li_Na_K_Be_Al_Ga_In_V_Fe_Th_Np_Am.SDF contains the 2D structures of the organic ligands (L) and the experimental stability constant values (log K) for the equilibrium M + L = ML (M = Li+, Na+, K+, Be2+, Al3+, Ga3+, In3+, VO2+, Fe3+, Th4+, NpO2 + and Am3+) in water at 298 K and an ionic strength 0.1 M. 2). Predictive performances of the eMLR consensus models in 5CV (Table SI 1). 3). Predictive performances of the SVM models in 5CV (Table SI 2). 4). Predictive performances of the ASNN models in 5CV (Table SI 3). 5). The statistical parameters of the best individual eMLR models and optimal descriptor types according to the training subsets of the 5CV procedure (Table SI 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Solov’ev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, V., Kireeva, N., Ovchinnikova, S. et al. The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling. J Incl Phenom Macrocycl Chem 83, 89–101 (2015). https://doi.org/10.1007/s10847-015-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0543-6

Keywords

Navigation