Skip to main content
Log in

Chiral separation of phenyllactic acid by helical structure from spring dextrin

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We performed the enzymatic synthesis of spring dextrin (SD) with a helical conformation and investigated its chiral-recognition properties in relation to the stereoselective phenyllactic acid (PLA), using reversed-phase high-performance liquid chromatography. The effects of column temperature, buffer pH and methanol content on enantioselective separation were investigated. Baseline chromatographic separation was achieved on an Inertsil ODS-SP column using 1 % SD as the chiral mobile-phase additive. Helical structure was necessary for chiral separation of PLA, according to visible spectroscopy. Molecular dynamic simulations to predict the interactions between SD and PLA showed that van der Waals attractions played an important role in enantiomer separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Maier, N.M., Franco, P., Lindner, W.: Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906, 3–33 (2001)

    Article  CAS  Google Scholar 

  2. Ramesh, R., Swaroop, P.S., Gonnade, R.G., Thirupathi, C., Waterworth, R.A., Millar, J.G., Reddy, D.S.: Syntheses and determination of absolute configurations and biological activities of the enantiomers of the longtailed mealybug pheromone. J. Org. Chem. 78, 6281–6284 (2013)

    Article  CAS  Google Scholar 

  3. Strom, K., Sjogren, J., Broberg, A., Schnurer, J.: Lactobacillus plantarum MiLAB 393 Produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68, 4322–4327 (2002)

    Article  CAS  Google Scholar 

  4. Abell, D.A., Blunt, W.J., Foulds, J.G., Munro, H.G.M.: Chemistry of the mycalamides: antiviral and antitumour compounds from a New Zealand marine sponge. Part 6.1-3 The synthesis and testing of analogues of the C(7)-C(10) fragment. J. Chem. Soc. Perkin Trans. 11, 1647–1654 (1997)

    Article  Google Scholar 

  5. Taniguchi, M., Suzumura, K.-I., Nagai, K., Kawasaki, T., Saito, T., Takasaki, J., Suzuki, K.-I., Fujita, S.: Tsukamoto, S.-i.: structure of YM-254890, a Novel Gq/11 inhibitor from Chromobacterium sp. QS3666. Tetrahedron 59, 4533–4538 (2003)

    Article  CAS  Google Scholar 

  6. Tang, H., Sutherland, A.S.M., Osusky, L.M., Li, Y., Holzwarth, J.F., Bohne, C.: Chiral recognition for the complexation dynamics of [small beta]-cyclodextrin with the enantiomers of 2-naphthyl-1-ethanol. Photochem. Photobiol. S. 13, 358–369 (2014)

    Article  CAS  Google Scholar 

  7. Car, Ž., Kodrin, I., Požar, J., Ribić, R., Kovačević, D., Peroković, V.P.: Experimental and computational study of the complexation of adamantyl glycosides with β-cyclodextrin. Tetrahedron 69, 8051–8063 (2013)

    Article  CAS  Google Scholar 

  8. Zhao, J., Lu, X., Wang, Y., Tan, T.T.Y.: Surface-up constructed tandem-inverted bilayer cyclodextrins for enhanced enantioseparation and adsorption. J. Chromatogr. A 1343, 101–108 (2014)

    Article  CAS  Google Scholar 

  9. Xu, J., Zhao, W., Ning, Y., Bashari, M., Chen, Y., Jin, Z., Yang, N., Xu, X.: Enantiomer separation of phenyllactic acid by HPLC with Hp-β-cyclodextrin as chiral mobile phase additive. J. Incl. Phenom. Macro. 76, 461–465 (2013)

    Article  CAS  Google Scholar 

  10. Řezanka, P., Sýkora, D., Novotný, M., Havlík, M., Král, V.: Nonaqueous capillary electrophoretic enantioseparation of water insoluble Tröger’s base derivatives using β-cyclodextrin as chiral selector. Chirality 25, 810–813 (2013)

    Article  Google Scholar 

  11. Kitagawa, F., Otsuka, K.: Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J. Chromatogr. B 879, 3078–3095 (2011)

    Article  CAS  Google Scholar 

  12. Fakhari, A.R., Tabani, H., Behdad, H., Nojavan, S., Taghizadeh, M.: Electrically-enhanced microextraction combined with maltodextrin-modified capillary electrophoresis for quantification of tolterodine enantiomers in biological samples. Microchem. J. 106, 186–193 (2013)

    Article  CAS  Google Scholar 

  13. Nojavan, S., Fakhari, A.R.: Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: effect of zwitterionic property of cetirizine on enantioseparation. Electrophoresis 32, 764–771 (2011)

    Article  CAS  Google Scholar 

  14. Soini, H., Stefansson, M., Riekkola, M.-L., Novotny, M.V.: Maltooligosaccharides as Chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. Anal. Chem. 66, 3477–3484 (1994)

    Article  CAS  Google Scholar 

  15. Chronakis, I.S.: On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: a review. Crit. Rev. Food Sci. 38, 599–637 (1998)

    Article  CAS  Google Scholar 

  16. Zhang, K.-K., Hu, D.-Y., Zhu, H.-J., Yang, J.-C., Song, B.-A.: Enantioselective degradation of dufulin in four types of soil. J. Agric. Food Chem. 62, 1771–1776 (2014)

    Article  CAS  Google Scholar 

  17. Shen, J., Zhao, Y., Inagaki, S., Yamamoto, C., Shen, Y., Liu, S., Okamoto, Y.: Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. A 1286, 41–46 (2013)

    Article  CAS  Google Scholar 

  18. Wei, W., Guo, B., Lin, J.-M.: Helical- and ahelical-dependent chiral recognition mechanisms in capillary electrophoresis using amylose as the selector. Electrophoresis 30, 1380–1387 (2009)

    Article  CAS  Google Scholar 

  19. Xu, J., Zhao, W., Ning, Y., Jin, Z., Xu, B., Xu, X.: Comparative study of spring dextrin impact on amylose retrogradation. J. Agric. Food Chem. 60, 4970–4976 (2012)

    Article  CAS  Google Scholar 

  20. Xu, J., Fan, X., Ning, Y., Wang, P., Jin, Z., Lv, H., Xu, B., Xu, X.: Effect of spring dextrin on retrogradation of wheat and corn starch gels. Food Hydrocolloids 33, 361–367 (2013)

    Article  CAS  Google Scholar 

  21. Wang, R., Kim, J.-H., Kim, B.-S., Park, C.-S., Yoo, S.-H.: Preparation and characterization of non-covalently immobilized amylosucrase using a pH-dependent autoprecipitating carrier. Bioresour. Technol. 102, 6370–6374 (2011)

    Article  CAS  Google Scholar 

  22. Xu, J., Zhao, W., Ning, Y., Bashari, M., Jin, Z., Xu, B., Zhang, L., Duan, X., Chen, H., Wu, F., Xu, X.: Can helical spring dextrin be composed of higher eight glucose units per turn? J. Mol. Struct. 1036, 274–278 (2013)

    Article  CAS  Google Scholar 

  23. Xu, J., Zhao, W., Ning, Y., Bashari, M., Wu, F., Chen, H., Yang, N., Jin, Z., Xu, B., Zhang, L., Xu, X.: Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydr. Polym. 92, 1633–1640 (2013)

    Article  CAS  Google Scholar 

  24. Stefan-van Staden, R.-I., Nejem, M.F., van Staden, J.Y., Aboul-Enein, H.: Enantioselective, potentiometric membrane electrodes (EPME) based on maltodextrins for the determination of l-vesamicol in serum samples. Curr. Pharm. Anal. 7, 253–257 (2011)

    Article  CAS  Google Scholar 

  25. D’Hulst, A., Verbeke, N.: Separation of the enantiomers of coumarinic anticoagulant drugs by capillary electrophoresis using maltodextrins as chiral modifiers. Chirality 6, 225–229 (1994)

    Google Scholar 

  26. Shen, J., Ikai, T., Okamoto, Y.: Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups. J. Chromatogr. A 1217, 1041–1047 (2010)

    Article  CAS  Google Scholar 

  27. Andersson, L., Rydberg, U., Larsson, H., Andersson, R., Åman, P.: Preparation and characterisation of linear dextrins and their use as substrates in in vitro studies of starch branching enzymes. Carbohydr. Polym. 47, 53–58 (2002)

    Article  CAS  Google Scholar 

  28. Peng, Z.-L., Yi, F., Guo, B., Lin, J.-M.: Temperature effects on the enantioselectivity of basic analytes in capillary EKC using sulfated β-CDs as chiral selectors. Electrophosis 28, 3753–3758 (2007)

    Article  CAS  Google Scholar 

  29. Lamparczyk, H., Zarzycki, P.K., Nowakowska, J.: Effect of temperature on separation of norgestrel enantiomers by high-performance liquid chromatography. J. Chromatogr. A 668, 413–417 (1994)

    Article  CAS  Google Scholar 

  30. Lavermicocca, P., Valerio, F., Visconti, A.: Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 69, 634–640 (2003)

    Article  CAS  Google Scholar 

  31. Ye, J., Yu, W., Chen, G., Shen, Z., Zeng, S.: Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by HPLC with hydroxypropyl-β-cyclodextrin as chiral mobile phase additive. Biomed. Chromatogr. 24, 799–807 (2010)

    Article  CAS  Google Scholar 

  32. Chen, D., Jiang, S., Chen, Y., Hu, Y.: HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive. J. Pharm. Biomed. 34, 239–245 (2004)

    Article  CAS  Google Scholar 

  33. Tong, S., Zhang, H., Shen, M., Ito, Y., Yan, J.: Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation. J. Chromatogr. B 962, 44–51 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31401647), Nature Science Foundation of Jiangsu Province (No. BK20140150), Fundamental Research Funds for the Central Universities (JUSRP11449), Program for Changjiang Scholars and Innovative Research Team in University (IRT1135) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, No. 137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuerong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xu, X., Wang, Q. et al. Chiral separation of phenyllactic acid by helical structure from spring dextrin. J Incl Phenom Macrocycl Chem 82, 515–521 (2015). https://doi.org/10.1007/s10847-015-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0487-x

Keywords

Navigation