Skip to main content
Log in

Modification of carbon paste electrode with cucurbit[8]uril and its recognition to phenols

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical response of a carbon paste electrodes modified by cucurbit[8]uril (Q[8]) has been described. The electrochemical characterization of Q[8]-modified electrode (Q[8]MCPE) by using cyclic voltammetry exhibits the recognition to phenols. For two series of substrates, o-, m-, p-hydroxybenzyl alcohol and o-, m-, p-methoxyphenol, the special response depends on the structures of substrates, the modification with macrocyclic compound Q[8] always favors m-substituted phenols.

Graphical Abstract

The electrochemical response of a cucurbit[8]uril-modified carbon paste electrodes to phenols has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ong, W., Kaifer, M.G., Kaifer, A.E.: Cucurbit[7]uril: a very effective host for Viologens and their cation radicals. Org. Lett. 10, 1791 (2002)

    Article  Google Scholar 

  2. Kim, H.J., Heo, J., Jeon, W.S., Lee, E., Kim, J., Sakamoto, S., Yamaguchi, K.: Selective inclusion of a hetero-guest pair in a molecular host: formation of stable charge-transfer complexes in cucurbit[8]uril. Angew. Chem. Int. Ed. 40, 1526 (2001)

    Article  CAS  Google Scholar 

  3. Jeon, Y.J., Bhradawaj, P.K., Chio, S.W., Lee, J.W., Kim, K.: Supramolecular amphiphiles: spontaneous formation of vesicles triggered by formation of a charge transfer complex in a host. Angew. Chem. Int. Ed. 41, 4474 (2002)

    Article  CAS  Google Scholar 

  4. Alberto, G.C., Pascal, J., Jurriaan, H.: Cucurbit[7]uril self-assembled monolayers studied with force spectroscopy. Langmuir 27, 11508 (2011)

    Article  Google Scholar 

  5. Liu, J.S., Du, X.Z.: Cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642 (2010)

    Article  CAS  Google Scholar 

  6. Tian, F., Cheng, N., Nouvel, N., Geng, J., Scherman, O.A.: Site-selective immobilization of colloids on Au substrates via a noncovalent supramolecular “handcuff”. Langmuir 26, 5323 (2010)

    Article  CAS  Google Scholar 

  7. Correia, H.D., Demets, G.J.-F.: Cucurbit[6]uril/PVC-based semipermeable membranes as electrode modifiers for electrochemical investigation of insoluble substrates. Electrochem. Commun. 11, 1928 (2009)

    Article  CAS  Google Scholar 

  8. del Pozo, M., Hernández, P., Hernández, L., Quintana, C.: Cucurbit[8]uril host-guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. J. Mater. Chem. 21, 13657 (2011)

    Article  Google Scholar 

  9. Buaki-Sogo, M., del Pozo, M., Hernández, P., García, H., Quintana, C.: Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta 101, 135 (2012)

    Article  CAS  Google Scholar 

  10. Ferancová, A., Korgová, E., Zima, J., Barek, J.: Cyclodextrin modified carbon paste based electrodes as sensors for the determination of carcinogenic polycyclic aromatic amines. Electroanal. 23, 1668 (2002)

    Article  Google Scholar 

  11. Ijeri, V.S., Algarra, M., Martins, A.: Electrocatalytic determination of vitamin C using calixarene modified carbon paste electrodes. Electroanal 24, 2082 (2004)

    Article  Google Scholar 

  12. El-Ries, M.A., Ghany, M.F.A., Hussin, L.A., El-Anwar, F.M., Mohamed, A.M.: Voltammetric behavior of ketoconazole and its determination in cosmetic preparation using a β-cyclodextrin modified glassy carbon electrode. Bull. Facul. of Pharm. Cairo Univ. 51, 49 (2013)

    Article  Google Scholar 

  13. Sakly, N., Souiri, M., Fekih Romdhane, F., Ben Ouada, H., Jaffrezic-Renault, N.: Platinum electrode functionalized with calix [4] arene thin films for impedimetric detection of sodium ions. Mater. Sci. Eng. C 21, 47 (2002)

    Article  Google Scholar 

  14. Asan, A., Isildak, I.: Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J. Chromatogr. A 988, 151 (2003)

    Article  Google Scholar 

  15. Kim, K.R., Kim, H.: Validated gas chromatographic–mass spectrometric analysis of urinary cannabinoids purified with a calcium-hardened β-cyclodextrin polymer. J. Chromatogr. A 886, 87 (2000)

    Article  Google Scholar 

  16. Herberer, T., Stan, H.-J.: Detection of more than 50 substituted phenols as their t-butyldimethylsilyl derivatives using gas chromatography-mass spectrometry. Anal. Chim. Acta 341, 21 (1997)

    Article  Google Scholar 

  17. Nagaraja, P., Vasantha, R.A., Sunitha, K.R.: A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta 55, 1039 (2001)

    Article  CAS  Google Scholar 

  18. Nozaki, O., Iwaeda, T., Kato, Y.: Amines for detection of dopamine by generation of hydrogen peroxide and peroxyoxalate chemiluminescence. J. Biolumin. Chemilumin. 11, 309 (1996)

    Article  CAS  Google Scholar 

  19. Liu, S.Q., Yu, J.H., Ju, H.X.: Amines for detection of dopamine by generation of hydrogen peroxide and peroxyoxalate chemiluminescence. J. Electroanal. Chem. 540, 61 (2003)

    Article  CAS  Google Scholar 

  20. Kozminski, K.D., Gutman, D.A., Davila, V., Sulzer, D., Ewing, A.G.: Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem. 70, 3123 (1998)

    Article  CAS  Google Scholar 

  21. Hu, S.S., Xu, C.L., Wang, G.P.: Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54, 115 (2001)

    Article  CAS  Google Scholar 

  22. Fernández, L., Borrás, C., Carrero, H.: Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode. Electrochim. Acta 52, 872 (2006)

    Article  Google Scholar 

  23. Du, H.J., Ye, J.S., Zhang, J.Q.: A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J. Electroanal. Chem. 650, 209 (2011)

    Article  CAS  Google Scholar 

  24. Wang, Y.H., Cong, H., Zhao, F.F., Xue, S.F., Tao, Z., Zhu, Q.J., Wei, G.: Selective catalysis for the oxidation of alcohols to aldehydes in the presence of cucurbit[8]uril. Catal. Commun. 12, 1127 (2011)

    Article  CAS  Google Scholar 

  25. Zimmer, H., Lankin, D.C., Horgan, S.W.: Oxidations with potassium nitrosodisulfonate (Fremy’s radical). Teuber reaction. Chem. Rev. 71, 229 (1971)

    Article  CAS  Google Scholar 

  26. Magdzia, D., Rodriguez, A.A., Van De Water, R.W., Pettus, T.R.R.: Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid (IBX). Org. Lett. 4, 285 (2002)

    Article  Google Scholar 

  27. Cong, H., Li, Z.J., Wang, Y.H., Tao, Z., Yamato, T., Xue, S.F., Wei, G.: Substituent effect of substrates on cucurbit[8]uril-catalytic oxidationof aryl alcohols. J. Mol. Catal. A: Chem. 374-375, 32 (2013)

    Google Scholar 

  28. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr. T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A, 2004 Gaussian 03, Revision C.02 Gaussian, Inc., Wallingford CT

  29. Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 6, 619 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of National Natural Science Foundation of China (No. 21162003), the International Collaboration Project of Guizhou Province (No. [2011]7003), and the “Chun Hui” Project of the Chinese Ministry of Education (No. Z2014087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Cong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(docx 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, H., Li, ZJ., Geng, QX. et al. Modification of carbon paste electrode with cucurbit[8]uril and its recognition to phenols. J Incl Phenom Macrocycl Chem 81, 493–498 (2015). https://doi.org/10.1007/s10847-015-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0480-4

Keywords

Navigation