Skip to main content

Advertisement

Log in

Effect of the preparation method on crystallinity, particle size, aqueous solubility and dissolution of different samples of the poorly water-soluble fenofibrate with HP-β-CD

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

To determine the effect of the preparation method on the physicochemical properties, such as crystallinity, particle size, solubility and dissolution, of the poorly water-soluble fenofibrate, different samples were prepared from fenofibrate and hydroxypropyl-β-cyclodextrin (HP-β-CD) in a 1:1 molar ratio, by physical mixing, trituration, kneading, solvent-evaporation and spray-drying techniques. The corresponding aqueous solubilities and dissolutions were studied in comparison with that of the drug powder. Characterization of these samples was accomplished using particle size determination, powder x-ray diffraction, differential scanning calorimetry, thermogravimetry, scanning electron microscopy and Fourier transform infrared spectroscopy. All preparations improved the solubility and dissolution of the drug, as compared with that of the drug powder (P < 0.05), in the following descending order of techniques utilized: spray-drying > solvent-evaporation > kneading > trituration > physical mixing. In particular, the aqueous solubility of fenofibrate from the spray-dried preparation was 85.93 ± 6.82 µg/ml, and the dissolution was about 90 % within 20 min. The drug was present in the crystalline state in the physically mixed, triturated and kneaded preparations. However, it was converted into the amorphous state in the solvent-evaporated and spray-dried preparations. The spray-dried preparation having the smallest particle size of 2.44 ± 0.03 μm gave discrete particles. Thus, in the development of a preparation of the poorly water-soluble fenofibrate with HP-β-CD, the preparation method exhibits a significant effect on the physicochemical properties of the drug. Among the various preparations tested in this study, the spray-dried sample, which provided the highest solubility and dissolution of fenofibrate, is strongly recommended for possible administration via the oral route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balfour, J.A., McTavish, D., Heel, R.C.: Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 40(2), 260–290 (1990)

    Article  CAS  Google Scholar 

  2. Munoz, A., Guichard, J.P., Reginault, P.: Micronised fenofibrate. Atherosclerosis 110, Suppl(0), S45–S48 (1994). doi:http://dx.doi.org/10.1016/0021-9150(94)05375-S

  3. Ming-Thau, S., Ching-Min, Y., Sokoloski, T.D.: Characterization and dissolution of fenofibrate solid dispersion systems. Int. J. Pharm. 103(2), 137–146 (1994). doi:http://dx.doi.org/10.1016/0378-5173(94)90094-9

  4. Vogt, M., Kunath, K., Dressman, J.B.: Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. Eur. J. Pharm. Biopharm. 68(2), 283–288 (2008)

    Article  CAS  Google Scholar 

  5. Dressman, J., Butler, J., Hempenstall, J., Reppas, C.: The BCS: where do we go from here? Pharm. Technol. 25(7), 68–77 (2001)

    CAS  Google Scholar 

  6. Amidon, G., Lennernäs, H., Shah, V., Crison, J.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995). doi:10.1023/a:1016212804288

    Article  CAS  Google Scholar 

  7. Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., Charbit, G.: Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int. J. Pharm. 377(1–2), 25–34 (2009). doi:http://dx.doi.org/10.1016/j.ijpharm.2009.04.047

  8. Cutler, L., Howes, C., Deeks, N.J., Buck, T.L., Jeffrey, P.: Development of a P-glycoprotein knockout model in rodents to define species differences in its functional effect at the blood–brain barrier. J. Pharm. Sci. 95(9), 1944–1953 (2006)

    Article  CAS  Google Scholar 

  9. Yoshihashi, Y., Iijima, H., Yonemochi, E., Terada, K.: Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal. Calorim. 85(3), 689–692 (2006). doi:10.1007/s10973-006-7653-8

    Article  CAS  Google Scholar 

  10. Goddeeris, C., Coacci, J., Van den Mooter, G.: Correlation between digestion of the lipid phase of smedds and release of the anti-HIV drug UC 781 and the anti-mycotic drug enilconazole from smedds. Eur. J. Pharm. Biopharm. 66(2), 173–181 (2007). doi:http://dx.doi.org/10.1016/j.ejpb.2006.10.005

  11. Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50(1), 47–60 (2000). doi:http://dx.doi.org/10.1016/S0939-6411(00)00076-X

  12. Perrut, M., Jung, J., Leboeuf, F.: Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part I: micronization of neat particles. Int. J. Pharm. 288(1), 3–10 (2005). doi:http://dx.doi.org/10.1016/j.ijpharm.2004.09.007

  13. Antoniadou-Vyza, E., Buckton, G., Michaleas, S.G., Loukas, Y.L., Efentakis, M.: The formation of an inclusion complex of methocarbamol with hydroxypropyl-β-cyclodextrin: the effect on chemical stability, solubility and dissolution rate. Int. J. Pharm. 158(2), 233–239 (1997). doi:http://dx.doi.org/10.1016/S0378-5173(97)00258-5

  14. Müller, B.W., Brauns, U.: Solubilization of drugs by modified β-cyclodextrins. Int. J. Pharm. 26(1–2), 77–88 (1985). doi:http://dx.doi.org/10.1016/0378-5173(85)90201-7

  15. Pitha, J., Pitha, J.: Amorphous water-soluble derivatives of cyclodextrins: nontoxic dissolution enhancing excipients. J. Pharm. Sci. 74(9), 987–990 (1985). doi:10.1002/jps.2600740916

    Article  CAS  Google Scholar 

  16. Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86(2), 147–162 (1997). doi:10.1021/js960213f

    Article  CAS  Google Scholar 

  17. Loftsson, T., Jarho, P., Masson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2(2), 335–351 (2005)

    Article  CAS  Google Scholar 

  18. Miro, A., Quaglia, F., Giannini, L., Cappello, B., Giannini, L., Immacolata La Rotonda, M.: Drug/cyclodextrin solid systems in the design of hydrophilic matrices: a strategy to modulate drug delivery rate. Curr. Drug Deliv. 3(4), 373–378 (2006). doi:10.2174/156720106778558994

    Article  CAS  Google Scholar 

  19. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)

    Article  CAS  Google Scholar 

  20. Thompson, D.O.: Cyclodextrins&#151; enabling excipients: their present and future use in pharmaceuticals. 14(1), 104 (1997). doi:10.1615/CritRevTherDrugCarrierSyst.v14.i1.10

  21. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1358 (1997)

    Article  CAS  Google Scholar 

  22. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92(6), 1457–1470 (1992)

    Article  CAS  Google Scholar 

  23. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98(5), 1875–1918 (1998)

    Article  CAS  Google Scholar 

  24. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4(2), 117–212 (1965)

    CAS  Google Scholar 

  25. Patil, J., Kadam, D., Marapur, S., Kamalapur, M.: Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs: a review. Int. J. Pharm. Sci. Rev. Res. 2(2), 29–33 (2010)

    CAS  Google Scholar 

  26. Astakhova, A.V., Demina, N.B.: Modern drug technologies: synthesis, characterization, and use of inclusion complexes between drugs and cyclodextrins (a review). Pharm. Chem. J. 38(2), 105–108 (2004). doi:10.1023/B:PHAC.0000032490.04705.ba

    Article  CAS  Google Scholar 

  27. Fernandes, C.M., Veiga, F.J.B.: Effect of the hydrophobic nature of triacetyl-beta-cyclodextrin on the complexation with nicardipine hydrochloride: physicochemical and dissolution properties of the kneaded and spray-dried complexes. Chem. Pharm. Bull. 50(12), 1597–1602 (2002). Tokyo

    Article  CAS  Google Scholar 

  28. Sebhatu, T., Angberg, M., Ahlneck, C.: Assessment of the degree of disorder in crystalline solids by isothermal microcalorimetry. Int. J. Pharm. 104(2), 135–144 (1994)

    Article  CAS  Google Scholar 

  29. Mehmood Yousaf, A., Wuk Kim, D., Choi, H.-G., Oh, E.: Validation of a highly sensitive RP-HPLC method for quantification of fenofibrate in pure and pharmaceutical dosage forms. Curr. Pharm. Anal. 10(2), 97–104 (2014)

    Article  Google Scholar 

  30. Shah, V.P., Noory, A., Noory, C., McCullough, B., Clarke, S., Everett, R., Naviasky, H., Srinivasan, B., Fortman, D., Skelly, J.P.: In vitro dissolution of sparingly water-soluble drug dosage forms. Int. J. Pharm. 125(1), 99–106 (1995)

    Article  CAS  Google Scholar 

  31. Stamm, A., Seth, P.: Fenofibrate pharmaceutical composition having high bioavailabilty. In. Google Patents, (2006). http://www.google.com/patents/US6277405

  32. Sanganwar, G.P., Gupta, R.B.: Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Int. J. Pharm. 360(1–2), 213–218 (2008). doi:http://dx.doi.org/10.1016/j.ijpharm.2008.04.041

  33. Joe, J.H., Lee, W.M., Park, Y.-J., Joe, K.H., Oh, D.H., Seo, Y.G., Woo, J.S., Yong, C.S., Choi, H.-G.: Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int. J. Pharm. 395(1–2), 161–166 (2010). doi:http://dx.doi.org/10.1016/j.ijpharm.2010.05.023

  34. Konno, H., Handa, T., Alonzo, D.E., Taylor, L.S.: Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm. 70(2), 493–499 (2008)

    Article  CAS  Google Scholar 

  35. Noyes, A.A., Whitney, W.R.: The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19(12), 930–934 (1897)

    Article  Google Scholar 

  36. Mihajlovic, T., Kachrimanis, K., Graovac, A., Djuric, Z., Ibric, S.: Improvement of aripiprazole solubility by complexation with (2-hydroxy) propyl-β-cyclodextrin using spray drying technique. AAPS Pharm. Sci. Tech. 13(2), 623–631 (2012)

    Article  CAS  Google Scholar 

  37. Hancock, B.C., Parks, M.: What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17(4), 397–404 (2000)

    Article  CAS  Google Scholar 

  38. Dias, M.M.R., Raghavan, S.L., Pellett, M.A., Hadgraft, J.: The effect of β-cyclodextrins on the permeation of diclofenac from supersaturated solutions. Int. J. Pharm. 263(1–2), 173–181 (2003). doi:http://dx.doi.org/10.1016/S0378-5173(03)00366-1

  39. Derakhshanian, V., Banerjee, S.: Cyclodextrin inhibits calcium carbonate crystallization and scaling. Ind. Eng. Chem. Res. 51(11), 4463–4465 (2012)

    Article  CAS  Google Scholar 

  40. Clas, S.D., Kwong, E., Meisner, D., Vadas, E.B., Winters, C.: Topical polymeric drug delivery system. In. Google Patents, (1997). http://www.google.com/patents/EP0758229A1?cl=en

  41. Upadhye, S.B., Kulkarni, S.J., Majumdar, S., Avery, M.A., Gul, W., ElSohly, M.A., Repka, M.A.: Preparation and characterization of inclusion complexes of a hemisuccinate ester prodrug of Δ9-tetrahydrocannabinol with modified beta-cyclodextrins. AAPS Pharm. Sci. Tech. 11(2), 509–517 (2010)

    Article  CAS  Google Scholar 

  42. Chow, A.H., Hsia, C.K., Gordon, J.D., Young, J.W., Vargha-Butler, E.I.: Assessment of wettability and its relationship to the intrinsic dissolution rate of doped phenytoin crystals. Int. J. Pharm. 126(1), 21–28 (1995)

    Article  CAS  Google Scholar 

  43. Kawashima, Y., Saito, M., Takenaka, H.: Improvement of solubility and dissolution rate of poorly water-soluble salicylic acid by a spray-drying technique. J. Pharm. Pharmacol. 27(1), 1–5 (1975)

    Article  CAS  Google Scholar 

  44. Dai, W.-G., Dong, L.C., Song, Y.-Q.: Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int. J. Pharm. 342(1), 201–207 (2007)

    Article  CAS  Google Scholar 

  45. Mura, P., Cirri, M., Faucci, M., Ginès-Dorado, J., Bettinetti, G.: Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J. Pharm. Biomed. Anal. 30(2), 227–237 (2002)

    Article  CAS  Google Scholar 

  46. Srinarong, P., Faber, J., Visser, M., Hinrichs, W., Frijlink, H.: Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. Eur. J. Pharm. Biopharm. 73(1), 154–161 (2009)

    Article  CAS  Google Scholar 

  47. Yonemochi, E., Kitahara, S., Maeda, S., Yamamura, S., Oguchi, T., Yamamoto, K.: Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. European J. Pharm. Sci. 7(4), 331–338 (1999)

    Article  CAS  Google Scholar 

  48. Kubo, H., Mizobe, M.: Improvement of dissolution rate and oral bioavailability of a sparingly water-soluble drug, ()-5-[[2-(2-Naphthalenylmethyl)-5-benzoxazolyl] methyl]-2, 4-thiazolidinedione, in Co-ground Mixture with d-Mannitol. Biol. Pharm. Bull. 20, 460–463 (1997)

    Article  CAS  Google Scholar 

  49. Purvis, T., Vaughn, J.M., Rogers, T.L., Chen, X., Overhoff, K.A., Sinswat, P., Hu, J., McConville, J.T., Johnston, K.P., Williams III, R.O.: Cryogenic liquids, nanoparticles, and microencapsulation. Int. J. Pharm. 324(1), 43–50 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012R1A2A2A01045658).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Han-Gon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, A.M., Kim, D.W., Cho, K.H. et al. Effect of the preparation method on crystallinity, particle size, aqueous solubility and dissolution of different samples of the poorly water-soluble fenofibrate with HP-β-CD. J Incl Phenom Macrocycl Chem 81, 347–356 (2015). https://doi.org/10.1007/s10847-014-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0461-z

Keywords

Navigation