Skip to main content
Log in

Cyclodextrin modulation of gallic acid in vitro antibacterial activity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The substitution of large spectrum antibiotics for natural bioactive molecules (especially polyphenolics) for the treatment of wound infections has come into prominence in the pharmaceutical industry. However, the use of such molecules depends on their stability during environmental stress and on their ability to reach the action site without losing biological properties. The application of cyclodextrins as a vehicle for polyphenolics protection has been documented and appears to enhance the properties of bioactive molecules. Therefore, the encapsulation of gallic acid, an antibacterial agent with low stability, by β-cyclodextrin, (2-hydroxy) propyl-β-cyclodextrin and methyl-β-cyclodextrin, was investigated. Encapsulation by β-cyclodextrin was confirmed for pH 3 and 5, with similar stability parameters. The (2-hydroxy) propyl-β-cyclodextrin and methyl-β-cyclodextrin interactions with gallic acid were only confirmed at pH 3. Among the three cyclodextrins, better gallic acid encapsulation were observed for (2-hydroxy) propyl-β-cyclodextrin, followed by β-cyclodextrin and methyl-β-cyclodextrin. The effect of cyclodextrin encapsulation on the gallic acid antibacterial activity was also analysed. The antibacterial activity of the inclusion complexes was investigated here for the first time. According to the results, encapsulation of gallic acid by (2-hydroxy) propyl-β-cyclodextrin seems to be a viable option for the treatment of skin and soft tissue infections, since this inclusion complex has good stability and antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrin-based hydrogels toward improved wound dressings. Crit. Rev. Biotechnol. 8551, 1–10 (2013)

    Google Scholar 

  2. Loftsson, T., Masson, M.: Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm. 225, 15–30 (2001)

    Article  CAS  Google Scholar 

  3. Buschmann, H.-J., Schollmeyer, E.: Applications of cyclodextrins in cosmetic products: A review. J. Cosmet. Sci. 53, 185–191 (2002)

    CAS  Google Scholar 

  4. Del Valle, E.: Cyclodextrins and their uses: a review. Process. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  5. Manakker, F., Vermonden, T., Vans Nostrum, C.F., Hennink, W.E., van de Manakker, F.: Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 10, 3157–3174 (2009)

    Article  Google Scholar 

  6. Hirose, K.: Determination of binding constants. In: Schalley, C. (ed.) Anal. methods Supramol, pp. 17–54. Wiley, Weinheim (2007)

    Google Scholar 

  7. Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014)

    Article  CAS  Google Scholar 

  8. Celik, S.E., Ozyürek, M., Tufan, A.N., Güçlü, K., Apak, R.: Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 78, 1615–1624 (2011)

    Article  Google Scholar 

  9. Dryden, M.S.: Skin and soft tissue infection: microbiology and epidemiology. Int. J. Antimicrob. Agents. 34(Suppl 1), S2–S7 (2009)

    Article  CAS  Google Scholar 

  10. Kim, S.-H., Jun, C.-D., Suk, K., Choi, B.-J., Lim, H., Park, S., Lee, S.H., Shin, H.-Y., Kim, D.-K., Shin, T.-Y.: Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 91, 123–131 (2006)

    Article  CAS  Google Scholar 

  11. Wang, X., Wang, J., Yang, N.: Flow injection chemiluminescent detection of gallic acid in olive fruits. Food Chem. 105, 340–345 (2007)

    Article  CAS  Google Scholar 

  12. Billes, F., Mohammed-Ziegler, I., Bombicz, P.: Vibrational spectroscopic study on the quantum chemical model and the X-ray structure of gallic acid, solvent effect on the structure and spectra. Vib. Spectrosc. 43, 193–202 (2007)

    Article  CAS  Google Scholar 

  13. Lu, Z., Nie, G., Belton, P.S., Tang, H., Zhao, B.: Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 48, 263–274 (2006)

    Article  CAS  Google Scholar 

  14. Daneshfar, A., Ghaziaskar, H.S., Homayoun, N.: Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate. J. Chem. Eng. Data. 53, 776–778 (2008)

    Article  CAS  Google Scholar 

  15. Martínez, N., Junquera, E., Aicart, E.: Ultrasonic, density, and potentiometric characterization of the interaction of gentisic and gallic acids with an apolar cavity in aqueous solution. Phys. Chem. Chem. Phys. 1, 4811–4817 (1999)

    Article  Google Scholar 

  16. Fang, Z., Bhandari, B.: Encapsulation of polyphenols—a review. Trends. Food. Sci. Technol. 21, 510–523 (2010)

    Article  CAS  Google Scholar 

  17. Guimaraes, R., Barros, L., Carvalho, A., Ferreira, I.C.F.R.: Studies on chemical constituents and bioactivity of rosa micrantha: an alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J. Agric. Food Chem. 58, 6277–6284 (2010)

    Article  CAS  Google Scholar 

  18. Da Rosa, C.G., Borges, C.D., Zambiazi, R.C., Nunes, M.R., Benvenutti, E.V., Da Luz, S.R., D’Avila, R.F., Rutz, J.K.: Microencapsulation of gallic acid in chitosan, beta-cyclodextrin and xanthan. Ind. Crops. Prod. 46, 138–146 (2013)

    Article  Google Scholar 

  19. Divakar, S., Maheswaran, M.: Structural studies on inclusion compounds of beta-cyclodextrin with some substituted phenols. J. Incl. Phenom. Mol. Recognit. Chem. 27, 113–126 (1997)

    Article  CAS  Google Scholar 

  20. Górnas, P., Neunert, G., Baczyński, K., Polewski, K.: Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: Spectroscopic, thermodynamic and molecular modelling study. Food. Chem. 114, 190–196 (2009)

    Article  Google Scholar 

  21. Zhao, M., Wang, H., Yang, B., Tao, H.: Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food. Chem. 120, 1138–1142 (2010)

    Article  CAS  Google Scholar 

  22. Stražišar, M., Andrenšek, S., Šmidovnik, A.: Effect of beta-cyclodextrin on antioxidant activity of coumaric acids. Food. Chem. 110, 636–642 (2008)

    Article  Google Scholar 

  23. Benesi, H., Hildebrand, J.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2832 (1948)

    Article  Google Scholar 

  24. Wiegand, I., Hilpert, K., Hancock, R.E.W.: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008)

    Article  CAS  Google Scholar 

  25. Friedman, M., Jürgens, H.S.: Effect of pH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem. 48, 2101–2110 (2000)

    Article  CAS  Google Scholar 

  26. Kumar, S.: Spectroscopy of Organic Compounds. New Age International Pvt Ltd Publishers, New Delhi (2006)

    Google Scholar 

  27. Anouar, E.H., Gierschner, J., Duroux, J.-L., Trouillas, P.: UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study. Food. Chem. 131, 79–89 (2012)

    Article  CAS  Google Scholar 

  28. Polewski, K., Kniat, S., Slawinska, D.: Gallic acid, a natural antioxidant, in aqueous and micellar environment: spectroscopic studies. Curr. Top. Biophys. 26, 217–227 (2002)

    CAS  Google Scholar 

  29. Sankaranarayanan, R.K., Siva, S., Antony Muthu Prabhu, A., Rajendiran, N., Prabhu, A.A.M.: A study on the inclusion complexation of 3,4,5-trihydroxybenzoic acid with beta-cyclodextrin at different pH. J. Incl. Phenom. Macrocycl. Chem. 67, 461–470 (2010)

    Article  CAS  Google Scholar 

  30. Borges, A., Ferreira, C., Saavedra, M.J., Simões, M.: Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug. Resist. 19, 256–265 (2013)

    Article  CAS  Google Scholar 

  31. Kwon, Y.-I., Apostolidis, E., Labbe, R.G., Shetty, K.: Inhibition of Staphylococcus aureus by Phenolic Phytochemicals of Selected Clonal Herbs Species of Lamiaceae Family and Likely Mode of Action through Proline Oxidation. Food. Biotechnol. 21, 71–89 (2007)

    Article  CAS  Google Scholar 

  32. Price, L.B., Liu, C.M., Melendez, J.H., Frankel, Y.M., Engelthaler, D., Aziz, M., Bowers, J., Rattray, R., Ravel, J., Kingsley, C., Keim, P.S., Lazarus, G.S., Zenilman, J.M.: Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS. One. 4, e6462 (2009)

    Article  Google Scholar 

  33. Grice, E., Segre, J.: The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011)

    Article  CAS  Google Scholar 

  34. Howell-Jones, R.S., Wilson, M.J., Hill, K.E., Howard, A.J., Price, P.E., Thomas, D.W.: A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J. Antimicrob. Chemother. 55, 143–149 (2005)

    Article  CAS  Google Scholar 

  35. Bruce, S., Schick, D., Tanaka, E.M.J., Montgomerie, J.Z.: Selective medium for isolation of Klebsiella pneumoniae. J. Clin. Microbiol. 13, 1114–1116 (1981)

    CAS  Google Scholar 

  36. Cotter, P.D., Hill, C.: Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429–453 (2003)

    Article  CAS  Google Scholar 

  37. Slonczewski, J.L., Fujisawa, M., Dopson, M., Krulwich, T.A.: Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 55, 1–317 (2009)

    Article  Google Scholar 

  38. Calabrò, M.L., Tommasini, S., Donato, P., Stancanelli, R., Raneri, D., Catania, S., Costa, C., Villari, V., Ficarra, P., Ficarra, R.: The rutin/beta-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. J. Pharm. Biomed. Anal. 36, 1019–1027 (2005)

    Article  Google Scholar 

  39. Jullian, C., Orosteguis, T., Pérez-Cruz, F., Sánchez, P., Mendizabal, F., Olea-Azar, C.: Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 71, 269–275 (2008)

    Article  Google Scholar 

  40. Mercader-Ros, M.T., Lucas-Abellán, C., Fortea, M.I., Gabaldón, J.A., Núñez-Delicado, E.: Effect of HP-beta-cyclodextrins complexation on the antioxidant activity of flavonols. Food. Chem. 118, 769–773 (2010)

    Article  CAS  Google Scholar 

  41. Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M.: An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food. Chem. 136, 186–192 (2013)

    Article  CAS  Google Scholar 

  42. Madigan, M.T., Martinko, J.M., Dunlap, P.V., Clark, D.P.: Brock biology of microorganisms. Benjamin Cummings, San Francisco (2010)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027, co-funded by the “Programa Operacional Regional do Norte” (ON.2–O Novo Norte), QREN, FEDER. The authors also acknowledge the project “Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB”, Ref. FCOMP-01-0124-FEDER-027462. This work is, also, funded by FEDER funds through the Operational Programme for Competitiveness Factors—COMPETE and National Funds through FCT—Foundation for Science and Technology under the project PEst-C/CTM/UI0264/2011. Additionally, the authors would like to thank the FCT for the grant for E. Pinho (SFRH/BD/62665/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Pinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinho, E., Soares, G. & Henriques, M. Cyclodextrin modulation of gallic acid in vitro antibacterial activity. J Incl Phenom Macrocycl Chem 81, 205–214 (2015). https://doi.org/10.1007/s10847-014-0449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0449-8

Keywords

Navigation