Skip to main content

Structural studies of the inclusion complexes of the (+)- and (−)-borneol enantiomers in α- and β-cyclodextrin

Abstract

The crystal structures of the inclusion compounds of the (+)- and (−)-borneol enantiomers in α- and β-cyclodextrin (CD) were determined by X-ray crystallography at about 1 Å resolution. In all the cases, the α- or β-CDs form head-to-head dimers arranged in a “chessboard” crystal packing mode. In the cases of the (+)- and (−)-borneol/αCD inclusion complexes, one guest molecule is accommodated inside the formed dimeric cavity (2:1 host:guest stoichiometry) disordered over two and three sites respectively. Ιn the cases of the (+)- and (−)-borneol/βCD inclusion complexes, a highly disordered guest molecule is located inside the dimeric cavity and two additional guest molecules lay at the rims of the primary hydroxyls of the dimer (2:3 host:guest stoichiometry) participating in the crystal contacts by forming H-bonds with external water molecules and –OH groups of the β-CDs of the adjacent dimers. Regarding the ability of α- and β-CD for borneol enantioseparation, the crystallographic analysis shows that no significant differences concerning the inclusion geometry and crystal packing are observed between the inclusion complexes of the borneol enantiomers with the same host CD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Valle, E.M.M.D.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)

    Article  Google Scholar 

  2. 2.

    Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19(5), 344–362 (1980)

    Article  Google Scholar 

  3. 3.

    Chankvetadze, B.: The application of cyclodextrins for enantioseparations. Cyclodextrins and their complexes, pp. 119–146. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)

    Chapter  Google Scholar 

  4. 4.

    Shahgaldian, P., Pieles, U.: Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors 6(6), 593–615 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    Mentzafos, D., Mavridis, I.M., Yannakopoulou, K.: Structure of the 1: 1 Complex of Hexakis(2,3,6-tri- O-methyl) α-Cyclodextrin with (R)-(−)-1,7-Dioxaspiro[5.5]undecane. J. Incl. Phenom. Macrocycl. Chem. 33(3), 321–330 (1999)

    CAS  Article  Google Scholar 

  6. 6.

    Makedonopoulou, S., Yannakopoulou, K., Mentzafos, D., Lamzin, V., Popov, A., Mavridis, I.M.: Non-covalent interactions in the crystallization of the enantiomers of 1,7-dioxaspiro[5.5]undecane (olive fly sex pheromone) by enantiospecific cyclodextrin hosts, hexakis(2,3,6-tri-ıt O-methyl)-α-cyclodextrin and heptakis(2,3,6-tri-ıt O-methyl)-β-cyclodextrin. Acta Crystallogr. Sect. B 57(3), 399–409 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    Brown, G., Caira, M., Nassimbeni, L., Oudtshoorn, B.: Inclusion of ibuprofen by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: an X-ray diffraction and thermal analysis study. J. Incl. Phenom. Mol. Recognit. Chem. 26(4), 281–294 (1996)

    CAS  Article  Google Scholar 

  8. 8.

    Granger, R.E., Campbell, E.L., Johnston, G.A.R.: (+)- And (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem. Pharmacol. 69(7), 1101–1111 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    Li, Y.H., Sun, X.P., Zhang, Y.Q., Wang, N.S.: The antithrombotic effect of borneol related to its anticoagulant property. Am. J. Chin. Med. 36(04), 719–727 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    Kumar, M.S., Kumar, S., Raja, B.: Antihypertensive and antioxidant potential of borneol-a natural terpene in l-name—induced hypertensive rats. Int. J. Pharm. Biol Arch. 1(3), 271–279 (2010)

    Google Scholar 

  11. 11.

    He, H., Shen, Q., Li, J.: Effects of borneol on the intestinal transport and absorption of two P-glycoprotein substrates in rats. Arch. Pharm. Res. 34(7), 1161–1170 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Marques, H.M.C.: A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 25(5), 313–326 (2010)

    Article  Google Scholar 

  13. 13.

    Su, J., Chen, J., Li, L., Li, B., Shi, L., Chen, L., Xu, Z.: Formation of β-cyclodextrin inclusion enhances the stability and aqueous solubility of natural borneol. J. Food Sci. 77(6), C658–C664 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    Liu, Y., Yang, E.C., Yang, Y.W., Zhang, H.-Y., Fan, Z., Ding, F., Cao, R.: Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers. J. Org. Chem. 69(1), 173–180 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    Liu, Y., Zhang, Q., Chen, Y.: Spectrophotometric and calorimetric titration studies on molecular recognition of camphor and borneol by nucleobase-modified β-cyclodextrins. J. Phys. Chem. B 111(42), 12211–12218 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    Otwinowski, Z., Minor, W.: “[20] Processing of X-ray diffraction data collected in oscillation mode. In: Charles, J., Carter, W. (eds.) Macromolecular crystallography Part A, vol. 276, pp. 307–326. Academic Press, New York (1997)

    Chapter  Google Scholar 

  17. 17.

    Harata, K., Kawano, K.: Crystal structure of the cyclomaltohexaose (α-cyclodextrin) complex with isosorbide dinitrate. Guest-modulated channel-type structure. Carbohydr. Res. 337(6), 537–547 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    Mentzafos, D., Mavridis, I.M., Le Bas, G., Tsoucaris, G.: Structure of the 4-ıt tert-butylbenzyl alcohol–β-cyclodextrin complex. Common features in the geometry of β-cyclodextrin dimeric complexes. Acta Crystallogr. Sect. B 47(5), 746–757 (1991)

    Article  Google Scholar 

  19. 19.

    Beurskens, P.T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Gould, R.O., Smits, J.M.M.: The DIRDIF2008 program system. Crystallography Laboratory, University of Nijmegen, The Netherlands (1998)

    Google Scholar 

  20. 20.

    Sheldrick, G.M.: A short history of ıt SHELX. Acta Crystallogr. Sect. A 64(1), 112–122 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    Farrugia, L.J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32(4), 837–838 (1999)

    CAS  Article  Google Scholar 

  22. 22.

    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42(2), 339–341 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    Spek, A.L.: Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 65(2), 148–155 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P.A.: ıt Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41(2), 466–470 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    DeLano, W.L., System, The PyMOL Molecular Graphics: DeLano Scientific. San Carlos, CA (2002)

    Google Scholar 

  26. 26.

    Kokkinou, A., Tsorteki, F., Karpusas, M., Papakyriakou, A., Bethanis, K., Mentzafos, D.: Study of the inclusion of the (R)- and (S)-camphor enantiomers in α-cyclodextrin by X-ray crystallography and molecular dynamics. Carbohydr. Res. 345(8), 1034–1040 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the EMBL staff for the valuable support in data collection at the EMBL X11 and X13 beamlines at the DORIS storage ring, DESY, Hamburg (2011, Project no.: PX-11-151; Group leader: K. Bethanis).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kostas Bethanis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 105 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforides, E., Mentzafos, D. & Bethanis, K. Structural studies of the inclusion complexes of the (+)- and (−)-borneol enantiomers in α- and β-cyclodextrin. J Incl Phenom Macrocycl Chem 81, 193–203 (2015). https://doi.org/10.1007/s10847-014-0448-9

Download citation

Keywords

  • (+)-Borneol
  • (−)-Borneol
  • α-Cyclodextrin
  • β-Cyclodextrin
  • Inclusion compounds
  • Crystal structures