Skip to main content
Log in

Thermally induced molecular imprinting of luminescent vesicles

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Thermal imprinting of the lipid-water interface of phospholipid vesicles is achieved by reversible non-covalent assembly of membrane embedded amphiphilic metal complexes. The complexes have affinity to phosphate and imidazole groups and are preorganized by a phosphorylated hexapeptide template above the phase transition temperature. The template induced patterning is transferred into the gel phase of the membrane by cooling below the transition temperature. This limits the lateral diffusion and stabilizes the metal complex receptor organization, as confirmed by FRET measurements with dye-labeled receptors. After template removal an enhanced rebinding affinity of one order of magnitude for the target peptide was observed for the imprinted membranes compared to identical non-imprinted interfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note: Fluorescence intensity and therefore FRET emission is temperature dependent. Hence it is not possible to compare FRET signals monitored at different temperatures. Therefore we determine the FRET ratio (I580nm / I520nm) before and after analyte addition at different temperatures. The change of FRET ratio (ΔFRET ratio) is the difference between FRET ratio in the presence of a binding partner and the FRET ratio without analyte. This value is used to estimate the degree of analyte guided receptor arrangement below and above TM.

  2. FRET emission intensities were not changing during 10 min after cooling V1 to 10 °C.

  3. We previously reported the covalent molecular imprinting by photopolymerization using the same receptor – ligand pair (see ref. 27).

  4. Rebinding of P1 with a value of log K = 8.0 for imprinted and a value of log K = 7.3 for non-imprinted DPPC vesicles (TM = 41 °C) was determined analogously.

References

  1. Chen, L., Xu, S., Li, J.: Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev. 40(5), 2922–2942 (2011)

    Article  CAS  Google Scholar 

  2. Wulff, G.: Molecular imprinting in cross-linked materials with the aid of molecular templates: a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34(17), 1812–1832 (1995)

    Article  CAS  Google Scholar 

  3. Mosbach, K., Ramstrom, O.: The emerging technique of molecular imprinting and its future impact on biotechnology. Nat. Biotechnol. 14(2), 163–170 (1996)

    Article  CAS  Google Scholar 

  4. Sellergren, B.: Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends Anal. Chem. 16(6), 310–320 (1997)

    Article  CAS  Google Scholar 

  5. Haupt, K., Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100(7), 2495–2504 (2000)

    Article  CAS  Google Scholar 

  6. Vlatakis, G., Andersson, L.I., Muller, R., Mosbach, K.: Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413), 645–647 (1993)

    Article  CAS  Google Scholar 

  7. Sibrian-Vazquez, M., Spivak, D.A.: Molecular imprinting made easy. J. Am. Chem. Soc. 126(25), 7827–7833 (2004)

    Article  CAS  Google Scholar 

  8. Liang, R.-N., Song, D.-A., Zhang, R.-M., Qin, W.: Potentiometric sensing of neutral species based on a uniform-sized molecularly imprinted polymer as a receptor. Angew. Chem. Int. Ed. 49(14), 2556–2559 (2010)

    Article  CAS  Google Scholar 

  9. Bures, P., Huang, Y., Oral, E., Peppas, N.A.: Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J. Controlled Release 72(1–3), 25–33 (2001)

    Article  CAS  Google Scholar 

  10. Wulff, G., Liu, J.: Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc. Chem. Res. 45(2), 239–247 (2011)

    Article  Google Scholar 

  11. Wulff, G.: Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102(1), 1–28 (2002)

    Article  CAS  Google Scholar 

  12. Muratsugu, S., Tada, M.: Molecularly imprinted Ru complex catalysts integrated on oxide surfaces. Acc. Chem. Res. 46(2), 300–311 (2012)

    Article  Google Scholar 

  13. Cutivet, A., Schembri, C., Kovensky, J., Haupt, K.: Molecularly imprinted microgels as enzyme inhibitors. J. Am. Chem. Soc. 131(41), 14699–14702 (2009)

    Article  CAS  Google Scholar 

  14. Manetsch, R., Krasiński, A., Radić, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C.: In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126(40), 12809–12818 (2004)

    Article  CAS  Google Scholar 

  15. Mosbach, K., Yu, Y., Andersch, J., Ye, L.: Generation of new enzyme inhibitors using imprinted binding sites: the anti-idiotypic approach, a step toward the next generation of molecular imprinting. J. Am. Chem. Soc. 123(49), 12420–12421 (2001)

    Article  CAS  Google Scholar 

  16. Meggers, E.: From conventional to unusual enzyme inhibitor scaffolds: the quest for target specificity. Angew. Chem. Int. Ed. 50(11), 2442–2448 (2011)

    Article  CAS  Google Scholar 

  17. Cai, D., Ren, L., Zhao, H., Xu, C., Zhang, L., Yu, Y., Wang, H., Lan, Y., Roberts, M.F., Chuang, J.H., Naughton, M.J., Ren, Z., Chiles, T.C.: A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nano. 5(8), 597–601 (2010)

    Article  CAS  Google Scholar 

  18. Zheng, C., Zhang, X.-L., Liu, W., Liu, B., Yang, H.-H., Lin, Z.-A., Chen, G.-N.: A selective artificial enzyme inhibitor based on nanoparticle-enzyme interactions and molecular imprinting. Adv. Mater. 25(41), 5922–5927 (2013)

    Article  CAS  Google Scholar 

  19. Ki, C.D., Oh, C., Oh, S.-G., Chang, J.Y.: The use of a thermally reversible bond for molecular imprinting of silica spheres. J. Am. Chem. Soc. 124(50), 14838–14839 (2002)

    Article  CAS  Google Scholar 

  20. Gauczinski, J., Liu, Z., Zhang, X., Schönhoff, M.: Surface molecular imprinting in layer-by-layer films on silica particles. Langmuir 28(9), 4267–4273 (2012)

    Article  CAS  Google Scholar 

  21. Zhang, H., Jiang, J., Zhang, H., Zhang, Y., Sun, P.: Efficient synthesis of molecularly imprinted polymers with enzyme inhibition potency by the controlled surface imprinting approach. ACS Macro Lett. 2(6), 566–570 (2013)

    Article  CAS  Google Scholar 

  22. Li, Y., Dong, C., Chu, J., Qi, J., Li, X.: Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: a facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3(1), 280–287 (2011)

    Article  CAS  Google Scholar 

  23. Wulff, G., Chong, B.-O., Kolb, U.: Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew. Chem. Int. Ed. 45(18), 2955–2958 (2006)

    Article  CAS  Google Scholar 

  24. Resmini, M.: Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal. Chem. 402(10), 3021–3026 (2012)

    Article  CAS  Google Scholar 

  25. Pan, G., Zhang, Y., Ma, Y., Li, C., Zhang, H.: Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew. Chem. Int. Ed. 50(49), 11731–11734 (2011)

    Article  CAS  Google Scholar 

  26. Benito-Peña, E., Martins, S., Orellana, G., Moreno-Bondi, M.C.: Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples. Anal. Bioanal. Chem. 393(1), 235–245 (2009)

    Article  Google Scholar 

  27. Banerjee, S., König, B.: Molecular imprinting of luminescent vesicles. J. Am. Chem. Soc. 135(8), 2967–2970 (2013)

    Article  CAS  Google Scholar 

  28. Bayerl, T., Decher, G., Braunschweig, T.: Imprinted amphiphilic molecules having hydrophobic tail groups and hydrophilic head groups forming three-dimensional molecular imprinted surface at solid/liquid interface; for molecular separation, isolation, purification or catalyzation. In. US006051372A

  29. Kondo, Y., Yoshikawa, M., Okushita, H.: Molecularly imprinted polyamide membranes for chiral recognition. Polym. Bull. 44(5–6), 517–524 (2000)

    Article  CAS  Google Scholar 

  30. Byrne, M.E., Park, K., Peppas, N.A.: Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54(1), 149–161 (2002)

    Article  CAS  Google Scholar 

  31. Pan, G., Guo, Q., Cao, C., Yang, H., Li, B.: Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 9(14), 3840–3850 (2013)

    Article  CAS  Google Scholar 

  32. Alvarez-Lorenzo, C., Guney, O., Oya, T., Sakai, Y., Kobayashi, M., Enoki, T., Takeoka, Y., Ishibashi, T., Kuroda, K., Tanaka, K., Wang, G., Grosberg, A.Y., Masamune, S., Tanaka, T.: Reversible adsorption of calcium ions by imprinted temperature sensitive gels. J. Chem. Phys. 114(6), 2812–2816 (2001)

    Article  CAS  Google Scholar 

  33. Zimmerman, S.C., Lemcoff, N.G.: Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible? Chem. Commun. 1, 5–14 (2004)

    Article  Google Scholar 

  34. Hiratani, H., Alvarez-Lorenzo, C., Chuang, J., Guney, O., Grosberg, A.Y., Tanaka, T.: Effect of reversible cross-linker, N, N‘-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels. Langmuir 17(14), 4431–4436 (2001)

    Article  CAS  Google Scholar 

  35. Gruber, B., Stadlbauer, S., Späth, A., Weiss, S., Kalinina, M., König, B.: Modular chemosensors from self-assembled vesicle membranes with amphiphilic binding sites and reporter dyes. Angew. Chem. Int. Ed. 49(39), 7125–7128 (2010)

    Article  CAS  Google Scholar 

  36. Gruber, B., Stadlbauer, S., Woinaroschy, K., König, B.: Luminescent vesicular receptors for the recognition of biologically important phosphate species. Org. Biomol. Chem. 8(16), 3704–3714 (2010)

    Article  CAS  Google Scholar 

  37. Grauer, A., Riechers, A., Ritter, S., König, B.: Synthetic receptors for the differentiation of phosphorylated peptides with nanomolar affinities. Chem. Eur. J. 14(29), 8922–8927 (2008)

    Article  CAS  Google Scholar 

  38. Binder, W.H., Barragan, V., Menger, F.M.: Domains and rafts in lipid membranes. Angew. Chem. Int. Ed. 42(47), 5802–5827 (2003)

    Article  CAS  Google Scholar 

  39. Grochmal, A., Ferrero, E., Milanesi, L., Tomas, S.: Modulation of in-membrane receptor clustering upon binding of multivalent ligands. J. Am. Chem. Soc. 135(27), 10172–10177 (2013)

    Article  CAS  Google Scholar 

  40. Gruber, B., Balk, S., Stadlbauer, S., König, B.: Dynamic interface imprinting: high-affinity peptide binding sites assembled by analyte-induced recruiting of membrane receptors. Angew. Chem. Int. Ed. 51(40), 10060–10063 (2012)

    Article  CAS  Google Scholar 

  41. Gruber, B., König, B.: Self-assembled vesicles with functionalized membranes. Chem. Eur. J. 19(2), 438–448 (2013)

    Article  CAS  Google Scholar 

  42. Tamm, L.K., McConnell, H.M.: Supported phospholipid bilayers. Biophys. J. 47(1), 105–113 (1985)

    Article  CAS  Google Scholar 

  43. Lentz, B.R., Barenholz, Y., Thompson, T.E.: Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry 15(20), 4521–4528 (1976)

    Article  CAS  Google Scholar 

  44. Watts, A., Marsh, D., Knowles, P.F.: Characterization of dimyristoylphosphatidylcholine vesicles and their dimensional changes through the phase transition: molecular control of membrane morphology. Biochemistry 17(9), 1792–1801 (1978)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard König.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balk, S., König, B. Thermally induced molecular imprinting of luminescent vesicles. J Incl Phenom Macrocycl Chem 81, 135–139 (2015). https://doi.org/10.1007/s10847-014-0442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0442-2

Keywords

Navigation