Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Preparation of gamma cyclodextrin stabilized solid lipid nanoparticles (SLNS) using stearic acid–γ-cyclodextrin inclusion complex

  • 421 Accesses

  • 5 Citations

Abstract

The inclusion complexation behaviour of higher chain fatty acid, stearic acid (SA) with gamma cyclodextrin has been investigated. The inclusion complex was characterized by FT-IR, 1H NMR, 2D NMR, XRD and DSC techniques. The results showed that the SA molecule was entrapped inside the gamma cyclodextrin cavity. Further, inclusion complex was treated with lopinavir at 85 °C and emulsified with hot water at 85 °C. The resulted nanoemulsion was cooled down to form solid lipid nanoparticles (SLNs) stabilized with gamma cyclodextrin. Prepared SLNs were having average particle size of 212.5 ± 4.8 nm, zeta potential of −19.7 ± 0.66 mV and drug loading of 57.54 ± 0.62 %. The surface characteristics of SLNs were also observed with transmission electron microscopy and atomic force microscopy. Results indicate that inclusion complex of SA and gamma cyclodextrin can be used for SLNs preparation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

  2. 2.

    Rowe, R.C., Sheskey, P.J., Weller, P.J., Quinn, M.E.: Handbook of Pharmaceutical Excipients, 6th edn. The Pharmaceutical Press, London (2009)

  3. 3.

    Sun, T., Li, Y., Zhang, H., Li, J., Xin, F., Kong, L., Hao, A.: pH-reversible vesicles based on the “supramolecular amphiphilies” formed by cyclodextrin and anthraquinone derivate. Colloid Surf. A 375, 87–96 (2011)

  4. 4.

    Messner, M., Kukov, S.V., Brewster, M.E., Jansook, P., Loftsson, T.: Self-assembly of cyclodextrin complexes: aggregation of hydrocortisone/cyclodextrin complexes. Int. J. Pharm. 407, 174–183 (2011)

  5. 5.

    Paliwal, R., Rai, S., Vaidya, B., Khatri, K., Goyal, A.K., Mishra, N., Mehta, A., Vyas, S.P.: Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomed. Nanotechnol. 5, 184–191 (2009)

  6. 6.

    Noriega-Pelaez, E.K., Mendoza-Munoz, N., Ganem-Quintanar, A., Quintanar-Guerrero, D.: Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles. Drug Dev. Ind. Pharm. 37, 160–166 (2011)

  7. 7.

    Agarwal, S., Pal, D., Mitra, A.K.: Both P-gp and MRP2 mediate transport of Lopinavir, a protease inhibitor. Int. J. Pharm. 339, 139–147 (2007)

  8. 8.

    Alex, M.R.A., Chacko, A.J., Josea, S., Souto, E.B.: Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci. 42, 11–18 (2011)

  9. 9.

    Negi, J.S., Chattopadhyay, P., Sharma, A.K., Ram, V.: Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur. J. Pharm. Sci. 48, 231–239 (2013)

  10. 10.

    Miecznik, P., Kaczmarek, M.: Ultrasonic investigations of inclusion complexation of cyclodextrin by iodide ions in pseudo-binary aqueous system. J. Mol. Liq. 133, 120–124 (2007)

  11. 11.

    Chen, W., Yang, L., Ma, S., Yang, X., Fan, B., Lin, J.: Crassicauline A/β-cyclodextrin host-guest system: preparation, characterization, inclusion mode solubilisation and stability. Carbohyd. Polym. 84, 1321–1328 (2011)

  12. 12.

    Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010)

  13. 13.

    Srinivasan, K., Stalin, T., Sivakumar, K.: Spectral and electrochemical study of host–guest inclusion complex between 2,4-dinitrophenol and β-cyclodextrin. Spectrochim. Acta A 94, 89–100 (2012)

  14. 14.

    Varshosaz, J., Ghaffari, S., Khoshayand, M.R., Atyabi, F., Dehkordi, A.J., Kobafard, F.: Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design. Pharm. Dev. Technol. 17, 187–194 (2012)

  15. 15.

    Kang, J.H., Oh, D.H., Oh, Y., Yong, C.S., Choi, H.: Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur. J. Pharm. Biopharm. 80, 289–297 (2012)

  16. 16.

    Souza, L.G., Silva, E.J., Martins, A.L.L., Mota, M.F., Braga, R.C., Lima, E.M., Valadares, M.C., Taveira, S.F., Marreto, R.N.: Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm. 79, 189–196 (2011)

  17. 17.

    Donato, E.M., Dias, C.L., Rossi, R.C., Valente, R.S., Froehlich, P.E., Bergold, A.M.: LC method for studies on the stability of lopinavir and ritonavir in soft gelatin capsules. Chromatographia 63, 437–443 (2006)

  18. 18.

    Chen, H., Chang, X., Du, D., Liu, W., Liu, J., Weng, T., Yang, Y., Xu, H., Yang, X.: Podophyllotoxin loaded solid lipid nanoparticles for epidermal targeting. J. Control Release 110, 296–306 (2006)

  19. 19.

    Shah, M., Chuttani, K., Mishra, A.K., Pathak, K.: Oral solid compritol 888 ATO nanosuspension of simvastatin: optimization and biodistribution studies. Drug Dev. Ind. Pharm. 37, 526–537 (2011)

  20. 20.

    Wu, H., Liang, H., Yuan, Q., Wang, T., Yan, X.: Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohyd. Polym. 82, 613–617 (2010)

  21. 21.

    Yuan, C., Jin, Z., Xu, X.: Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modelling studies. Carbohyd. Polym. 89, 492–496 (2012)

  22. 22.

    Ensikat, H.J., Boese, M., Mader, W., Barthlott, W., Koch, K.: Crystallinity of plant Epicuticular waxes: electron and X-ray diffraction studies. Chem. Phys. Lipids 144, 45–59 (2006)

  23. 23.

    Hamdi, H., Abderrahim, R., Meganem, F.: Spectroscopic studies of inclusion complex of β-cyclodextrin and benzidine diammonium dipicrate. Spectrochim. Acta A 75, 32–36 (2010)

  24. 24.

    1H NMR spectroscopy of fatty acids and their derivatives. http://lipidlibrary.aocs.org/nmr/1NMRsat/index.html/. Accessed 20 Sept 2013

  25. 25.

    Gonil, P., Sajomsang, W., Ruktanonchai, U.R., Pimpha, N., Sramala, I., Nuchuchua, O., Saesoo, S., Chaleawlert-umpon, S., Puttipipatkhachorn, S.: Novel quaternized chitosan containing β-cyclodextrin moiety: synthesis, characterization and antimicrobial activity. Carbohyd. Polym. 83, 905–913 (2011)

  26. 26.

    Ruz, V., Froeyen, M., Busson, R., Gonzalex, M.M., Baudemprez, L., Mooter, G.V.D.: Characterization and molecular modelling of the inclusion complexes of 2-(2-nitrovinyl) furan (G-0) with cyclodextrines. Int. J. Pharm. 439, 275–285 (2012)

  27. 27.

    Macedo, O.F.L., Andrade, G.R.S., Conegero, L.S., Barreto, L.S., Costa, N.B., Gimenez, I.F., Almeida, L.E., Kubota, D.: Physicochemical study and characterization of the trimethoprim/2-hydroxypropyl-γ-cyclodextrin inclusion complex. Spectrochim. Acta A 86, 101–106 (2012)

  28. 28.

    Zhang, Z., Dallek, S., Vogt, R., Li, Y., Topping, T.D., Zhou, Y., Schoenung, J.M., Lavernia, J.: Degassing behavior of nanostructured Al and its composites. Metall. Mater. Trans. A 41, 532–541 (2010)

  29. 29.

    Li, J., Yan, D., Jiang, X., Chen, Q.: Formation of the crystalline inclusion complex between γ-cyclodextrin and poly (N-acetylethylenimine). Polymer 43, 2625–2629 (2002)

  30. 30.

    Klang, V., Matsko, N., Raupach, K., El-Hagin, N., Valenta, C.: Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. Eur. J. Pharm. Biopharm. 79, 58–67 (2011)

  31. 31.

    Das, S., Chaudhury, A.: Recent advances in lipid nanoparticles formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 12, 62–76 (2011)

  32. 32.

    Awaad, A., Nakamura, M., Ishimura, K.: Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomed. Nanotechnol. 8, 627–636 (2012)

  33. 33.

    Garg, A., Singh, S.: Enhancement of antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloid Surf. B 87, 280–288 (2011)

  34. 34.

    Vitorino, C., Carvalho, F.A., Almeida, A.J., Sousa, J.J., Pais, A.A.C.C.: The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf. B 84, 117–130 (2011)

Download references

Acknowledgments

Authors are grateful to AIIMS Dehli for providing TEM facility, Wadia Institute of himalayan geology, Dehradun for XRD facility, Sophisticated Analytical Instrumentation Facilities (SAIF), Panjab Univeristy for providing NMR facilities and SMITA lab, IIT Dehli for providing particle size, AFM and DSC facilities. Authors also would like to acknowledge Uttarakhand technical University, Dehradun for their kind support.

Author information

Correspondence to Jeetendra Singh Negi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Negi, J.S., Chattopadhyay, P., Sharma, A.K. et al. Preparation of gamma cyclodextrin stabilized solid lipid nanoparticles (SLNS) using stearic acid–γ-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 80, 359–368 (2014). https://doi.org/10.1007/s10847-014-0415-5

Download citation

Keywords

  • Solid lipid nanoparticles (SLNs)
  • Stearic acid–γ-cyclodextrin inclusion complex
  • Gamma cyclodextrin