Skip to main content
Log in

Gel-sol evolution of cyclodextrin-based nanosponges: role of the macrocycle size

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The effect of the macrocycle size on the gel-to-sol evolution of cyclodextrin-based hydrogel is here investigated by using Fourier transform infrared absorption in attenuated total reflectance geometry (FTIR-ATR). Different types of nanosponges obtained by polymerization of α- and β-cyclodextrin (CDNS) with an activated derivative of ethylenediaminetetraacetic acid have been progressively hydrated in order to follow the evolution of these systems from a gel state to a liquid suspension. The in deep analysis of the high-frequency vibrational dynamics of the hydrogel during its gel-sol evolution revealed that the microscopic origin of this phenomenon is strictly connected to different hydrogen bond environments in which water molecules confined in the pores of nanosponges can arrange. By following a well consolidated approach, the OH stretching band of water, clearly observed in the high-frequency range of the vibrational spectra of nanosponges hydrogel, has been decomposed into sub-bands assigned to different arrangements of water molecules at various degrees of cooperativity. A comparison of the diagrams obtained for homologous CDNS prepared from α- and β-CD shows how the size of cyclodextrin macrocycle allows to efficiently modulate the gelation points at constant cyclodextrin/crosslinker molar ratio n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  2. Lin, C.C., Metters, A.T.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Delivery Rev. 58, 1379–1408 (2006)

    Article  CAS  Google Scholar 

  3. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A., Peppas, N.A.: Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009)

    Article  CAS  Google Scholar 

  4. Baumann, M.D., Kang, C.E., Stanwick, J.C., Wang, Y.F., Kim, H., Lapitsky, Y., Shoichet, M.S.: An injectable drug delivery platform for sustained combination therapy. J. Controlled Release 138, 205–213 (2009)

    Article  CAS  Google Scholar 

  5. Kim, Y.T., Caldwell, J.M., Bellamkonda, R.V.: Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials 30, 2582–2590 (2009)

    Article  CAS  Google Scholar 

  6. Baumann, M.D., Kang, C.E., Tator, C.H., Shoichet, M.S.: Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 31, 7631–7639 (2010)

    Article  CAS  Google Scholar 

  7. Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., Masi, M.: Smart approach to evaluate drug diffusivity in injectable agar-Carbomer hydrogels for drug delivery. J. Phys. Chem. B 115, 2503–2510 (2011)

    Article  CAS  Google Scholar 

  8. Rossi, F., Casalini, T., Santoro, M., Mele, A., Perale, G.: Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery. Chem. Pap. 65, 903–908 (2011)

    Article  CAS  Google Scholar 

  9. Gagnon, M.A., Lafleur, M.: Self-diffusion and mutual diffusion of small molecules in high-set curdlan hydrogels studied by 31P NMR. J. Phys. Chem. B 113, 9084–9091 (2009)

    Article  CAS  Google Scholar 

  10. Brandl, F., Kastner, F., Gschwind, R.M., Blunk, T., Tessmar, J., Gopferich, A.: Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics. J. Controlled Release 142, 221–228 (2010)

    Article  CAS  Google Scholar 

  11. Lin, C.C., Boyer, P.D., Aimetti, A.A., Anseth, K.S.: Regulating MCP-1 diffusion in affinity hydrogels for enhancing immuno-isolation. J. Control Release 142, 384–391 (2010)

    Article  CAS  Google Scholar 

  12. Biondi, M., Ungaro, F., Quaglia, F., Netti, P.A.: Controlled drug delivery in tissue engineering. Adv. Drug Delivery Rev. 60, 229–242 (2008)

    Article  CAS  Google Scholar 

  13. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)

    Article  CAS  Google Scholar 

  14. Elisseeff, J., McIntosh, W., Anseth, K., Riley, S., Ragan, P., Langer, R.: Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. Biomed. Mater. Res. 51, 164–171 (2000)

    Article  CAS  Google Scholar 

  15. Rossi, F., Perale, G., Masi, M.: Biological buffered saline solution as solvent in agar-Carbomer hydrogel synthesis. Chem. Pap. 64, 573–578 (2010)

    Article  CAS  Google Scholar 

  16. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in & β-CD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69, 403–409 (2011)

    Article  CAS  Google Scholar 

  17. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Inside new materials: an experimental numerical approach for the structural elucidation of nanoporous cross-linked polymers. J. Phys. Chem. B 116, 13133–13140 (2012)

    Article  CAS  Google Scholar 

  18. Rossi, B., Caponi, S., Castiglione, F., Corezzi, S., Fontana, A., Giarola, M., Mariotto, G., Mele, A., Petrillo, C., Trotta, F., Viliani, G.: Networking properties of cross-linked polymeric systems probed by inelastic light scattering experiments. J. Phys. Chem. B 116, 5323–5327 (2012)

    Article  CAS  Google Scholar 

  19. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Panzeri, W., Rossi, B., Trotta, F., Venuti, V.: Vibrational dynamics and hydrogen bond properties of beta-CD nanosponges: an FTIR-ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. Chem. 75, 247–254 (2013)

    Article  CAS  Google Scholar 

  20. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Effect of cross-linking properties on the vibrational dynamics of cyclodextrin-based polymers: an experimental-numerical study. J. Phys. Chem. B 116, 7952–7958 (2012)

    Article  CAS  Google Scholar 

  21. Crupi, V., Fontana, A., Giarola, M., Majolino, D., Mariotto, G., Mele, A., Melone, L., Punta, C., Rossi, B., Trotta, F., Venuti, V.: Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers. J. Raman Spectrosc. 44, 1457–1462 (2013)

    Article  CAS  Google Scholar 

  22. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Vibrational spectroscopy investigation of swelling phenomena in cyclodextrin nanosponges. J. Raman Spectrosc. 44, 1463–1469 (2013)

    Article  CAS  Google Scholar 

  23. Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: effect of water confinement. Soft Matter 9, 6457–6464 (2013)

    Article  CAS  Google Scholar 

  24. Crupi, V., Majolino, D., Mele, A., Melone, L., Punta, C., Rossi, B., Toraldo, F., Trotta, F., Venuti, V.: Direct evidence of gel-sol evolution in cyclodextrin-based hydrogel as revealed by FTIR-ATR spectroscopy. Soft Matter (2014). doi:10.1039/C3SM52354C

    Google Scholar 

  25. Trotta, F. Tumiatti, W. 2003 Cross-linked polymers based on cyclodextrin for removing polluting agents; Patent WO 03/085002

  26. Trotta, F., Tumiatti, W., Cavalli, R., Zerbinati, O., Roggero, C.M., Vallero, R. 2006 Ultrasound-assisted synthesis of cyclodextrin-based nanosponges; Patent number WO 06/002814

  27. Trotta, F., Tumiatti, W., Cavalli, R., Roggero, C., Mognetti, B., Berta, G. 2009 Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs; Patent number WO 09/003656 A1

  28. Crupi, V., Longo, F., Majolino, D., Venuti, V.: Vibrational properties of water molecules adsorbed in different zeolitic frameworks. J. Phys. Condens. Matt. 18, 3563–3580 (2006)

    Article  CAS  Google Scholar 

  29. Crupi, V., Majolino, D., Migliardo, P., Venuti, V.: Diffusive relaxations and vibrational properties of water and H-bonded systems in confined state by neutrons and light scattering: state of the art. J. Phys. Chem. B 104, 11000–11012 (2000)

    Article  CAS  Google Scholar 

  30. Crupi, V., Majolino, D., Migliardo, P., Venuti, V.: Wanderlingh: a FT-IR absorption analysis of vibrational properties of water encaged in NaA zeolites: evidence of a “structure maker” role of zeolitic surface. Eur. Phys. J. E 12, S55–S58 (2003)

    Article  CAS  Google Scholar 

  31. Crupi, V., Interdonato, S., Longo, F., Majolino, D., Migliardo, P., Venuti, V.: New insight on the hydrogen bonding structures of nanoconfined water: a Raman study. J. Raman Spectrosc. 39, 244–249 (2008)

    Article  CAS  Google Scholar 

  32. Crupi, V., Longo, F., Majolino, D., Venuti, V.: Raman spectroscopy: probing dynamics of water molecules confined in nanoporous silica glasses. Eur. Phys. J. Special Topics 141, 61–64 (2007)

    Article  Google Scholar 

  33. Crupi, V., Majolino, D., Migliardo, P., Venuti, V.: Inter- and intramolecular hydrogen bond in liquid polymers: a Foureir transform infrared response. Mol. Phys. 98, 1589–1594 (2000)

    Article  CAS  Google Scholar 

  34. Crupi, V., Longo, F., Majolino, D., Venuti, V.: T dependence of vibrational dynamics of water in ion-exchanged zeolites A: a detailed Fourier transform infrared attenuated total reflection study. J. Chem. Phys. 123, 154702 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castiglione, F., Crupi, V., Majolino, D. et al. Gel-sol evolution of cyclodextrin-based nanosponges: role of the macrocycle size. J Incl Phenom Macrocycl Chem 80, 77–83 (2014). https://doi.org/10.1007/s10847-014-0391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0391-9

Keywords

Navigation