Skip to main content

Organogels based on β-cyclodextrin system with molecular recognition property

Abstract

We reported a supramolecular system consisted of β-cyclodextrin, N,N-dimethylformamide and LiCl, which could exhibit different behaviors toward various alcohols. When some liquid monohydric alcohols were injected into the system at room temperature, a semitransparent organogel (the ambient temperature organogel) was formed. Compared with liquid monohydric alcohols, the addition of solid alcohols could induce the formation of a heat-set organogel, a solution, and an ice-like crystal at different temperatures. The xerogels and dried ice-like crystal were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetry and derivative thermogravimetry. The systems were also studied by 1H nuclear magnetic resonance and 2D rotating frame overhauser effect spectroscopy. The alcohol-responsive properties of this system could be further designed as molecule switches based on molecular recognition.

Graphical Abstract

The mechanism of the three-dimensional network formation by self-assembly in the systems: a, LiCl and heat (or liquid monohydric alcohol); b, LiCl, solid alcohol and heat (or cool). We found a novel supramolecular system containing β-cyclodextrin. It was a clear solution at room temperature and could form a heat-set organogel by heating. It could exhibit different behaviors toward various alcohols: ambient temperature organogel, ice-like crystal, heat-set organogel or solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ardá, A., Blasco, P.D., Silva, V., Schubert, V., André, S., Bruix, M., Cañada, F.J., Gabius, H.J., Unverzagt, C., Jiménez-Barbero, J.: Molecular recognition of complex-type biantennary N-glycans by protein receptors: a three-dimensional view on epitope selection by NMR. J. Am. Chem. Soc. 135, 2667–2675 (2013)

    Article  Google Scholar 

  2. 2.

    Ma, M., Paredes, A., Bong, D.: Intra- and inter-membrane pairwise molecular recognition between synthetic hydrogen-bonding phospholipids. J. Am. Chem. Soc. 130, 14456–14458 (2008)

    Article  CAS  Google Scholar 

  3. 3.

    Oleksy, A., Blanco, A.G., Boer, R., Usón, I., Aymamí, J., Rodger, A., Hannon, M.J., Coll, M.: Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew. Chem. Int. Ed. 45, 1227–1231 (2006)

    Article  Google Scholar 

  4. 4.

    Zhang, H., Li, F., Dever, B., Li, X.F., Le, X.C.: DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem. Rev. 113, 2812–2841 (2013)

    Article  CAS  Google Scholar 

  5. 5.

    Hargrove, A.E., Nieto, S., Zhang, T., Sessler, J.L., Anslyn, E.V.: Artificial receptors for the recognition of phosphorylated molecules. Chem. Rev. 111, 6603–6782 (2011)

    Article  CAS  Google Scholar 

  6. 6.

    Mahadevi, A.S., Sastry, G.N.: Cation–π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013)

    Article  CAS  Google Scholar 

  7. 7.

    Hermann, T., Patel, D.J.: Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000)

    Article  CAS  Google Scholar 

  8. 8.

    Dong, S., Luo, Y., Yan, X., Zheng, B., Ding, X., Yu, Y., Ma, Z., Zhao, Q., Huang, F.: A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem. 50, 1905–1909 (2011)

    Article  CAS  Google Scholar 

  9. 9.

    Wei, B., Mi, Y.: Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem. Commun. 46, 6308–6310 (2010)

    Article  Google Scholar 

  10. 10.

    Danjo, H., Hirata, K., Yoshigai, S., Azumaya, I., Kentaro, Y.: Back to back twin bowls of D 3-symmetric tris (spiroborate) s for supramolecular chain structures. J. Am. Chem. Soc. 131, 1638–1639 (2009)

    Article  CAS  Google Scholar 

  11. 11.

    Maeda, K., Mochizuki, H., Osato, K., Yashima, E.: Stimuli-responsive helical poly(phenylacetylene)s bearing cyclodextrin pendants that exhibit enantioselective gelation in response to chirality of a chiral amine and hierarchical super-structured helix formation. Macromolecules 44, 3217–3226 (2011)

    Article  CAS  Google Scholar 

  12. 12.

    Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H.: Macroscopic self-assembly through molecular recognition. Nat Chem 3, 34–37 (2010)

    Article  Google Scholar 

  13. 13.

    Yamaguchi, H., Kobayashi, R., Takashima, Y., Hashidzume, A., Harada, A.: Self-assembly of gels through molecular recognition of cyclodextrins: shape selectivity for linear and cyclic guest molecules. Macromolecules 44, 2395–2399 (2011)

    Article  CAS  Google Scholar 

  14. 14.

    Li, Y., Liu, J., Du, G., Yan, H., Wang, H., Zhang, H., An, W., Zhao, W., Sun, T., Xin, F., Kong, L., Li, Y., Hao, A., Hao, J.: Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimethylformamide. J. Phys. Chem. B 114, 10321–10326 (2010)

    Article  CAS  Google Scholar 

  15. 15.

    Liu, W., Xing, P., Xin, F., Hou, Y., Sun, T., Hao, J., Hao, A.: Novel double phase transforming organogel based on beta-cyclodextrin in 1,2-propylene glycol. J. Phys. Chem. B 116, 13106–13113 (2012)

    Article  CAS  Google Scholar 

  16. 16.

    Xin, F., Zhang, H., Hao, B., Sun, T., Kong, L., Li, Y., Hou, Y., Li, S., Zhang, Y., Hao, A.: Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate. Colloids Surf. A 410, 18–22 (2012)

    Article  CAS  Google Scholar 

  17. 17.

    Hou, Y., Xin, F., Yin, M., Kong, L., Zhang, H., Sun, T., Xing, P., Hao, A.: Stimuli-responsive supramolecular organogels that exhibit a succession of micro-morphologies. Colloids Surf. A 414, 160–167 (2012)

    Article  CAS  Google Scholar 

  18. 18.

    Zhu, P., Yan, X., Su, Y., Yang, Y., Li, J.: Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem. Eur. J. 16, 3176–3183 (2010)

    Article  CAS  Google Scholar 

  19. 19.

    Kida, T., Marui, Y., Miyawaki, K., Kato, E., Akashi, M.: Unique organogel formation with a channel-type cyclodextrin assembly. Chem. Commun. 16, 3889–3891 (2009)

    Article  Google Scholar 

  20. 20.

    Guo, X.Q., Song, L.X., Du, F.Y., Dang, Z., Wang, M.: Important effects of lithium carbonate on stoichiometry and property of the inclusion complexes of polypropylene glycol and β-cyclodextrin. J. Phys. Chem. B 115, 1139–1144 (2011)

    Article  CAS  Google Scholar 

  21. 21.

    Bolla, G., Nangia, A.: Clofazimine mesylate: a high solubility stable salt. Cryst. Growth Des. 12, 6250–6259 (2012)

    Article  CAS  Google Scholar 

  22. 22.

    Ohta, N., Fuyuhiro, A., Yamanari, K.: Complete enantioseparation through supramolecular complex formation between tris (1,3-diaminopropane) cobalt (III) phosphate and β-cyclodextrin,[Co (tn) 3] PO4·β-CDX. Inorg. Chem. 49, 9122–9124 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    Liu, B., Zhao, J., Liu, Y., Zhu, X., Zeng, J.: Physiochemical properties of the inclusion complex of puerarin and glucosyl-β-cyclodextrin. J. Agric. Food Chem. 60, 12501–12507 (2012)

    Article  CAS  Google Scholar 

  24. 24.

    Miura, T., Kida, T., Akashi, M.: Recognition of stereoregularity of poly (methacrylic acid) s with γ-cyclodextrin. Macromolecules 44, 3723–3729 (2011)

    Article  CAS  Google Scholar 

  25. 25.

    Ng, E.P., Chateigner, D., Bein, T., Valtchev, V., Mintova, S.: Capturing ultrasmall EMT zeolite from template-free systems. Science 335, 70–73 (2012)

    Article  CAS  Google Scholar 

  26. 26.

    Chung, J.W., Kwak, S.Y.: Iron-induced cyclodextrin self-assembly into size-controllable nanospheres. Langmuir 26, 2418–2423 (2009)

    Article  Google Scholar 

  27. 27.

    Song, L.X., Pan, S.Z., Zhu, L.H., Wang, M., Du, F.Y., Chen, J.: Molecule-ion interaction and its effect on coordination interaction. Inorg. Chem. 50, 2215–2223 (2011)

    Article  CAS  Google Scholar 

  28. 28.

    Liu, Y., Zhao, Y.L., Chen, Y., Wang, M.: Supramolecular assembly of gold nanoparticles mediated by polypseudorotaxane with thiolated β-cyclodextrin. Macromol. Rapid Commun. 26, 401–406 (2005)

    Article  CAS  Google Scholar 

  29. 29.

    Gao, Y.A., Li, Z.H., Du, J.M., Han, B.X., Li, G.Z., Hou, W.G., Shen, D., Zheng, L.Q., Zhang, G.Y.: Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem. Eur. J. 11, 5875–5880 (2005)

    Article  CAS  Google Scholar 

  30. 30.

    Song, L.X., Yang, J., Bai, L., Du, F.Y., Chen, J., Wang, M.: Molecule-ion interaction and its effect on electrostatic interaction in the system of copper chloride and β-cyclodextrin. Inorg. Chem. 50, 1682–1688 (2011)

    Article  CAS  Google Scholar 

  31. 31.

    Song, L.X., Du, F.Y., Guo, X.Q., Pan, S.Z.: Formation, characterization, and thermal degradation behavior of a novel tricomponent aggregate of β-cyclodextrin, ferrocene, and polypropylene glycol. J. Phys. Chem. B 114, 1738–1744 (2010)

    Article  CAS  Google Scholar 

  32. 32.

    Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T., Tsuruoka, M.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)

    Article  CAS  Google Scholar 

  33. 33.

    Franco, C., Schwingel, L., Lula, I., Sinisterra, R.D., Koester, L.S., Bassani, V.L.: Studies on coumestrol/β-cyclodextrin association: inclusion complex characterization. Int. J. Pharm. 369, 5–11 (2009)

    Article  CAS  Google Scholar 

  34. 34.

    Shin, J.A., Lim, Y.G., Lee, K.H.: Copper-catalyzed azide–alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J. Org. Chem. 77, 4117–4222 (2012)

    Article  CAS  Google Scholar 

  35. 35.

    Prasannan, A., Truong, T.L.B., Hong, P.D., Somanathan, N., Shown, I., Imae, T.: Synthesis and characterization of “hairy urchin”-like polyaniline by using β-cyclodextrin as a template. Langmuir 27, 766–773 (2010)

    Article  Google Scholar 

  36. 36.

    Shibu, E.S., Pradeep, T.: Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem. Mater. 23, 989–999 (2011)

    Article  CAS  Google Scholar 

  37. 37.

    Kida, T., Iwamoto, T., Asahara, H., Hinoue, T., Akashi, M.: Chiral recognition and kinetic resolution of aromatic amines via supramolecular chiral nanocapsules in nonpolar solvents. J. Am. Chem. Soc. 135, 3371–3374 (2013)

    Article  CAS  Google Scholar 

  38. 38.

    Taguchi, K.: Transient binding mode of phenolphthalein-β-cyclodextrin complex: an example of induced geometrical distortion. J. Am. Chem. Soc. 108, 2705–2709 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 20625307), National Basic Research Program of China (973 Program, 2009CB930103) and Shandong Province Natural Science Foundation (No. ZR2009CL022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aiyou Hao.

Additional information

Yuehui Hou and Shangyang Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1452 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hou, Y., Li, S., Sun, T. et al. Organogels based on β-cyclodextrin system with molecular recognition property. J Incl Phenom Macrocycl Chem 80, 217–224 (2014). https://doi.org/10.1007/s10847-013-0379-x

Download citation

Keywords

  • Organogel
  • β-Cyclodextrin
  • Molecular recognition
  • Supramolecular chemistry