Skip to main content
Log in

Napthaquinone derived ionophores: interaction with biologically important metal ions (Li+, Na+, K+, Mg2+ and Ca2+)

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The synthetic model systems based on the study of supramolecular compounds are proficient in mimicking the biological processes so as to get the insight of their processes. In this perspective, a series of naphthaquinone derived redox switchable ionophores namely D1 (2,3,5,6,8,9,11,12-octahydronaphtho [2,3b] [1,4,7,10,13] pentaoxacyclo octadecine-14,19-dione) and D2 (2,3,5,6,8,9-hexahydronaphtho[2,3-b] [1,4,7,10] tetraoxacyclododecine-11,16-dione) have been synthesized and interacted with Li+, Na+, K+, Ca2+, Mg2+ cations. The isolated solid state soft materials obtained after interaction were characterized by melting point, TLC, 1H NMR spectroscopy and CHN estimation. The extraction, transport potential and stability constant determination of these ionophores towards cations helped in investigating their binding strength in solution. The selective extraction of Na+ and Li+ by D1 and D2 correspondingly proves them an efficient compound for the manufacturing of chemosensor. Whereas efficient transport of Mg2+ by both the ionophores especially by D1 may assist in developing biomodels for understanding its transport through membrane in living system. The selectivity of these ionophores towards metal ions can be modulated by molecular tailoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suzuki, K., Sato, K., Hisamoto, H., Siswanta, D., Hayashi, K., Kasahara, N., Watanabe, K., Yamamoto, N., Sasakura, H.: Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode. Anal. Chem. 68(1), 208–215 (1996)

    Article  CAS  Google Scholar 

  2. Kim, Y.D., Jeong, H., Kang, S.O., Nam, K.C.H., Jeon, S.: Polymeric membrane sodium ion-selective electrodes based on calix[4] arene triesters. Bull. Korean Chem. Soc. 22(4), 405–408 (2001)

    CAS  Google Scholar 

  3. Chapoteau, E., Czech, B.P., Zazulak, W., Kumar, A.: First practical colorimetric assay of lithium in serum. Clin. Chem. 38(9), 1654–1657 (1992)

    CAS  Google Scholar 

  4. Christian, G.D.: Reagents for lithium electrodes and sensors for blood serum analysis. Sensors 2, 432–435 (2002)

    Article  CAS  Google Scholar 

  5. Sugihara, K., Kamiya, H., Yamaguchi, M., Kaneda, T., Misumi, S.: Synthetic macrocyclic ligands. III. Synthesis of a quinone-hydroquinone redox system incorporated with complexing ability toward cations. Tetrahedron Lett. 22, 1619 (1981)

    Article  CAS  Google Scholar 

  6. Wolf Jr, R.E., Cooper, S.R., et al.: Redox-active crown ethers: molecules designed to couple ion binding with a redox reaction. J. Am. Chem. Soc. 106(16), 4646–4647 (1984)

    Article  CAS  Google Scholar 

  7. Gustowski, D.A., Gatto, V.J., Kaifer, A., Echegoyen, L., Godt, R.E., Gokel, G.W.: Cation effects on the cyclic voltammograms of azotoluene and the potassium selectivity of the electrochemically-reduced azocryptand 4,13-(3,3′-bis-methylene-azobenzene) diaza-18-crown-6. J. Chem. Soc. Chem. Commun. 14, 923–925 (1984)

    Article  Google Scholar 

  8. Kaifer, A., Echegoyen, L., Gustowski, D.A., Goli, D.M., Gokel, G.W.: Enhanced sodium cation binding by electrochemically reduced nitrobenzene-substituted lariat ethers. J. Am. Chem. Soc. 105, 7168–7169 (1983)

    Article  CAS  Google Scholar 

  9. Janata, J.: Chemical sensors. Anal. Chem. 62(12), 33R–44R (1990)

    Article  CAS  Google Scholar 

  10. Awasthy, A., Bhatnagar, M., Tomar, J., Sharma, U.: Design and synthesis of redox-switched lariat ethers and their application for transport of alkali and alkaline-earth metal cations across supported liquid membrane, bioinorganic chemistry and applications. Bioinorg. Chem. Appl. 97141, 1–4 (2006)

    Article  Google Scholar 

  11. Dubey, S., Joshi, N., Sharma, U.: Extraction & bulk liquid membrane transport studies of biologically important metal ions (Li+, Na+ and K+) by synthetic ionophores. Main Group Met. Chem. 31(3–4), 211–214 (2008)

    CAS  Google Scholar 

  12. Vyas, V., Raizada, P., Sharma, U.: Characterization of anthraquinone derived redox switchable ionophores and their complexes with Li+, Na+, K+, Ca2+ and Mg2+ metal ions. Proc. Natl. Acad. Sci. Sec. A 80(II), 139–144 (2010)

    CAS  Google Scholar 

  13. Vyas, V., Vani, A., Dubey, S., Mimrot, M., Sharma, U.: Effect of side arm variation in anthraquinone-derived lariat ethers on uptake of Li+, K+, Ca2+ and Mg2+ metal ions. Main Group Met. Chem. 31(6), 283–288 (2008)

    Article  CAS  Google Scholar 

  14. Tomar, J., Awasthy, A., Sharma, U.: Synthetic ionophores for the separation of Li+, Na+, K+, Ca2+, Mg2+ metal ions using liquid membrane technology. Desalination 232, 102–109 (2008)

    Article  CAS  Google Scholar 

  15. Anchaliya, D., Sharma, U.: Consequence of variation in topology of naphthaquinone derived lariat ethers on uptake of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. Natl. Acad. Sci. Lett. 35(4), 277–284 (2012)

    Article  CAS  Google Scholar 

  16. Delgado, M., Gustowski, D.A., Yoo, H.K., Gatto, V.J., Gokel, G.W., Echegoyen, L.: Contrasting one- and two-cation behavior in syn- and anti-anthraquinone bibracchial podand (BiP) mono- and dianions assessed by cyclic voltammetry and electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc. 110, 119–123 (1988)

    Article  CAS  Google Scholar 

  17. Bhatnagar, M., Awasthy, A., Sharma, U.: Redox chemical switching of cation transport in liquid membrane system. Main Group Met. Chem. 31(3–4), 203–210 (2008)

    CAS  Google Scholar 

  18. Deepa, S., Sharma, U.: Stoichiometric complexes of some main group metal ions with noncyclic synthetic polyethers. Main Group Met. Chem. 26(1), 27–34 (2003)

    Article  CAS  Google Scholar 

  19. Khamaru, S., Sharma, U.: A convenient method for the synthesis of bis[2-(2-carboxymethylphenoxy)ethyl] ether and bis[2-(2-carboxyphenoxy)ethyl] ether and their application for transport of alkali metal cations across a supported liquid membrane. J. Chem. Res. 8, 411 (1998)

    Article  Google Scholar 

  20. Bhatnagar, M., Sharma, U.: The carrier facilitated transport of the lithium ions by a series of non-cyclic synthetic ionophores. J. Sci. Islam. Repub. Iran 14(4), 333–336 (2003)

    CAS  Google Scholar 

  21. Vogel, A.I.: A Text Book of Quantitative Inorganic Analysis. Longmans, London (1986)

    Google Scholar 

  22. Takeda, Y.: Thermodynamic study for dibenzo-24-crown-8 complexes with alkali metal ions in nonaqueous solvents. Bull. Chem. Soc. Jpn. 56(12), 3600–3602 (1983)

    Article  CAS  Google Scholar 

  23. Echegoyen, L.E., Yoo, H.K., Gattoo, V.J., Gokel, G.W., Echegoyen, L.: Cation transport using anthraquinone-derived lariat ethers and podands: the first example of electrochemically switched on/off activation/deactivation. J. Am. Chem. Soc. 111, 2440–2443 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to SAIF Chandigarh for 1H NMR spectral and ESIMS analysis. We are also grateful to CDRI Lucknow for elemental analysis and to Prof. Dr. B. K. Mehta, Head School of Studies in Chemistry and Biochemistry, Ujjain for providing required facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Disha Anchaliya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anchaliya, D., Sharma, U. Napthaquinone derived ionophores: interaction with biologically important metal ions (Li+, Na+, K+, Mg2+ and Ca2+). J Incl Phenom Macrocycl Chem 79, 465–471 (2014). https://doi.org/10.1007/s10847-013-0369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0369-z

Keywords

Navigation