Skip to main content
Log in

Synthesis, CMC determination and influence of the micelles, β-cyclodextrin, ionic liquids and liposome(dipalmitoylphosphatidylcholine) vesicles on the kinetics of an outer-sphere electron transfer reaction

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The surfactant–cobalt(III) complex, cis-[Co(trien)(4AMP)(DA)](ClO4)3, trien = triethylenetetramine, 4AMP = 4-aminopyridine, DA = dodecylamine was synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) value of this surfactant–cobalt(III) complex in aqueous solution was found out from conductance measurements. The conductivity data (at 303, 308, 313, 318 and 323 K) were used for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG °m , ΔHm and ΔS °m ). Also the kinetics of reduction of this surfactant–cobalt(III) complex by hexacyanoferrate(II) ion in micelles, β-cyclodextrin, ionic liquids (ILs) and in liposome vesicles (DPPC) media were studied at different temperature. The rate constant for the electron transfer reaction in micelles was found to increase with increase in the initial concentration of the surfactant–cobalt(III) complex. This peculiar behaviour of dependence of second-order rate constant on the initial concentration of one of the reactants has been attributed to the presence of various concentration of micelles under different initial concentration of the surfactant–cobalt(III) complex in the reaction medium. Inclusion of the long aliphatic chain of the surfactant complex ion into β-cyclodextrin leads to decrease in the rate constant. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. It is concluded that below the phase transition temperature, there is an accumulation of surfactant–cobalt(III) complex at the interior of the vesicle membrane through hydrophobic effects, and above the phase transition temperature the surfactant–cobalt(III) complex is released from the interior to the exterior surface of the vesicle. In the presence of ionic liquid medium the second order rate constant for this electron transfer reaction for the same complex was found to increase with increasing concentration of ILs has also been studied. An outer-sphere mechanism is proposed for all these reactions and the results have been explained based on the hydrophobicity of the ligand and the reactants with opposite charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Majumdar, T., Mahapatra, A.: Kinetics of electron transfer reaction in micellar and reverse micellar media reduction of [Co(NH3)5N3]Cl2 by ion(II). Colloids Surf. A 302, 360–365 (2005)

    Article  Google Scholar 

  2. De la Vega, R., Tejeda, P.P., Cornejo, P.L., Sanchez, F.: Kinetic study of the oxidation of [Ru(NH3)5pz]2+ By [Co(C2O4)3]3− in AOT–oil–water microemulsions and in CTACl micellar solutions. Langmuir 20, 1558–1563 (2004)

    Article  Google Scholar 

  3. Cornejo, P.L., Perez, P., Garcia, F., de la Vega, R., Sanchez, F.: Use of the pseudophase model in the interpretation of reactivity under restricted geometry conditions. An application to the study of the [Ru(NH3)5pz]2+ + S2O8 2− electron-transfer reaction in different micro heterogeneous systems. J. Am. Chem. Soc. 124, 5154–5164 (2002)

    Article  Google Scholar 

  4. Lopez-Cornejo, P., Prado-Gotor, R., Garcıa-Santana, A., Perez, F., Sanchez, F.: Comparative study of micellar and DNA effects on the reaction [Ru(NH3)5pz]2+ + S2O8 2−. Langmuir 19, 3185–3189 (2003)

    Article  CAS  Google Scholar 

  5. Prado-Gotor, R., Jimenez, R., Lopez, P., Perez, P., Gomez-Herrera, C., Sanchez, F.: Micellar effects upon the reaction between acetonitrile pentacyanoferrate(II) and bis(ethylenediammine)(2-pyrazinecarboxylato)cobalt(III). Langmuir 14, 1539–1543 (1998)

    Article  CAS  Google Scholar 

  6. Holder, A.A., Dasgupta, T.P.: Kinetics and mechanism of the reduction of the molybdatopentaamminecobalt(III) ion by aqueous sulfite and aqueous potassium hexacyanoferrate(II). Inorg. Chim. Acta 331, 279–289 (2002)

    Article  CAS  Google Scholar 

  7. Behm, C.A., Creaser, I., Daszkiewicz, B., Geue, R.J., Sargeson, A.M., Walker, G.W.: Novel cationic surfactants derived from metal ion cage complexes: potential anthelmintic agents. J. Chem. Soc. 24, 1843–1844 (1993)

    Google Scholar 

  8. Behm, C.A., Boreham, P.F.L., Creaser, I.I., Daszkiewicz, B., Maddalena, D.J., Sargeson, A.M., Snowdown, M.: Novel cationic surfactants derived from metal ion cage complexes: potential antiparasitic agents. Aust. J. Chem. 48, 1009–1030 (1995)

    Article  CAS  Google Scholar 

  9. Ghirlanda, G., Scrimin, P., Tecilla, P., Toffoletti, A.: Amphiphilic copper(II) complexes modeled after the metal-complexation subunit of bleomycin antibiotics. Langmuir 14, 1646–1655 (1998)

    Article  CAS  Google Scholar 

  10. Bernauer, K., Ghizdavu, S., Verardo, L.: Chiral metal complexes as probes in electron-transfer reactions involving metalloproteins. Coord. Chem. Rev. 190–192, 357–369 (1999)

    Article  Google Scholar 

  11. Tavernier, H.L., Barzykin, A.V., Tachiya, M., Fayer, M.D.: Solvent reorganization energy and free energy change for donor/acceptor electron transfer at micelle surfaces: theory and experiment. J. Phys. Chem. B 102, 6078–6088 (1998)

    Article  CAS  Google Scholar 

  12. Imonigie, J.A., Macartney, D.H.: The kinetics of electron-transfer reactions of the [FeCp(CpCH N(CH3)3]+/2+ couple in the presence of cyclodextrins in aqueous media. Inorg. Chim. Acta 225, 51–65 (1994)

    Article  CAS  Google Scholar 

  13. Macartney, D.H., Roszak, A.W., Smith, K.C.: Effects of β-cyclodextrin inclusion on the kinetics of the oxidation of bisferrocenyl cations by bis(pyridine-2,6-dicarboxylato)-cobaltate(III) in aqueous solution: crystal structure of dimethyldi-(1-methylferrocene)ammonium bromide. Inorg. Chim. Acta 291, 365–371 (1999)

    Article  CAS  Google Scholar 

  14. Wlie, R.S., Macartney, D.H.: Effects of cyclodextrin inclusion on the kinetics of the ligand substitution reactions of aquapentacyanoferrate(II) and pentacyano(N-heterocycle)ferrate(II) complexes in aqueous media. Inorg. Chem. 32, 1830–1837 (1993)

    Article  Google Scholar 

  15. Shortreed, M.E., Wylie, R.S., Macartney, D.H.: Inclusion of (N-Adamantan-1′-ylpyrazinium)pentacyanoferrate(11) ion in-and-cyclodextrins. Effects of inclusion on the spectroscopic properties and ligand substitution kinetics. Inorg. Chem. 32, 1824–1829 (1993)

    Article  CAS  Google Scholar 

  16. Papahadjopoulos, D.: In liposomes and their uses in biology and medicine. Ann. N. Y. Acad. Sci. 308, 1–462 (1978)

    Article  Google Scholar 

  17. Brown, B.S.: Biological Membranes. University of Manchester, Manchester (1996)

    Google Scholar 

  18. Paternostre, M.T., Roux, M., Rigaud, J.L.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27, 2668–2677 (1988)

    Article  CAS  Google Scholar 

  19. Almog, S., Litman, B.J., Wimley, W., Cohen, J., Wachtel, E.J., Barenholz, Y., Ben-Shaul, A., Lichtenberg, D.: States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry 29, 4582–4592 (1990)

    Article  CAS  Google Scholar 

  20. Javadian, S., Ruhi, V., Heydari, A., Shahir, A.A., Yousefi, A., Akbari, J.: Self-assembled CTAB nanostructures in aqueous/ionic liquid systems: effects of hydrogen bonding. Ind. Eng. Chem. Res. 52, 4517–4526 (2013)

    Article  CAS  Google Scholar 

  21. Blesic, M., Marques, M.H., Plechkova, N.V., Seddon, K.R., Rebelo, L.P.N., Lopes, A.: Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 9, 481–490 (2007)

    Article  CAS  Google Scholar 

  22. Kristin, A., Siddharth, F., Pandey, M.: Surfactant aggeregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide. Langmuir 20, 33–36 (2004)

    Article  Google Scholar 

  23. Yashiro, M., Matsumoto, K., Seki, N., Yoshikawa, S.: Preparation of Cobalt (II) and Nickel (II) complexes having an alkyl long chain and their surface tension reducing abilities. Bull. Chem. Soc. Jpn. 66, 1559–1562 (1993)

    Article  CAS  Google Scholar 

  24. Behm, C.A., Creaser, I.I., Daszkeiwicz, K.B., Geue, R.J., Sargeson, A.M., Walker, G.W.: Novel cationic surfactants derived from metal ion cage complexes: potential anthelmintic agents. J. Chem. Soc., Chem. Commun. 24, 1844–1846 (1993)

    Article  Google Scholar 

  25. Bruce, D.W., Denby, I.R., Tiddy, G.J.T., Watkins, J.M.: Synthesis and properties of surfactant complexes of cobalt(III) and chromium(III). J. Mater. Chem. 3, 911–916 (1993)

    Article  CAS  Google Scholar 

  26. Jaeger, D.A., Reddy, V.B., Arulsamy, N., Bhole, S.: Hydrophobic control of diastereoselectivity in the synthesis of double-chain surfactant co(III) complexes. Langmuir 14, 2589–2592 (1998)

    Article  CAS  Google Scholar 

  27. Viscardi, G., Quagliotto, P., Barolo, C., Savarino, P., Barni, E., Fisicaro, E.: Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem. 65, 8197–8203 (2000)

    Article  CAS  Google Scholar 

  28. Wanless, E.J., Phasley, R.M.: Surface and aqueous solution properties of a highly charged cage surfactant. Colloids Surf. 56, 201–215 (1991)

    Article  CAS  Google Scholar 

  29. Fallis, I.A., Griffiths, P.C., Griffithis, P.M., Hibbs, D.E., Hurthouse, M.B., Winnington, A.L.: Solid state and solution behavior of novel transition metal containing surfactants. Chem. Commun. 665–666 (1998). doi:10.1039/A708448J

  30. Santhakumar, K., Kumaraguru, N., Arumugam, M.N., Arunachalam, S.: Metallomicelles of Co(III) coordination complexes: synthesis, characterization and determination of CMC values. Trans. Met. Chem. 25, 1507–1513 (2006)

    CAS  Google Scholar 

  31. Santhakumar, K., Kumaraguru, N., Arunachalam, S., Arumugam, M.N.: Thermodynamics and micellar properties of some surface active cobalt(III) metallo surfactants in nonaqueous medium. Int. J. Chem. Kinet. (2006). doi:10.1002/kin.20285/pdf

  32. Sasikala, K., Arunachalam, S.: Studies on outer-sphere electron transfer between some surfactant–cobalt(III) complexes in micelles as well as in β-cyclodextrin. Colloids Surf. A Physicochem. Eng. Aspects 335, 98–102 (2009)

    Article  CAS  Google Scholar 

  33. Nagaraj, K., Arunachalam, S.: Synthesis, CMC determination, and outer sphere electron transfer reaction of the surfactant complex ion, cis-[Co(en)2(4CNP)(DA)]3+ with [Fe(CN)6]4− in micelles, β-cyclodextrin and liposome (dipalmidoylphosphotidylcholine) vesicles. Aust. J. Chem. (2013) (in press)

  34. Kipp, E.B., Haines, R.A.: Infrared studies of cis- and trans-bis(halogenoacetato)bis-(ethylenediamine)cobalt(III) complexes. Can. J. Chem. 47, 1073–1075 (1969)

    Article  CAS  Google Scholar 

  35. Morris, M.L., Busch, D.H.: Infrared spectra studies on the cis and trans isomers of diacidobis-(ethylenediamine)–cobalt(III) complexes. J. Am. Chem. Soc. 82, 1521–1524 (1960)

    Article  CAS  Google Scholar 

  36. Palade, D.M., Ablov, A.V., Zubarev, V.N.: Russian J. Inorg. Chem. 14, 227 (1969)

    Google Scholar 

  37. Ablov, A.V.: Russian J. Inorg. Chem. 6, 157 (1961)

    Google Scholar 

  38. Dayalan, A., Revathi, C.: Kinetics of the reduction of 4-amino and 4-cyanopyridinechlorocobaloximes by ion(II). J. Serb. Chem. Soc. 71, 1311–1321 (2006)

    Article  CAS  Google Scholar 

  39. Kitson, R.E.: Simultaneous spectrophotometric determination of cobalt, copper, and iron. Anal. Chem. 22, 664–667 (1950)

    Article  CAS  Google Scholar 

  40. Buckingam, D.A., Jones, D.: Infrared spectra of cobalt(III) Triethylenetetramine Complexes. Inorg. Chem. 4, 1387–1392 (1965)

    Article  Google Scholar 

  41. Miyashita, O.; Wolynes, P.G.; Onuchic, J.N. Simple energy landscape model for the kinetics of functional transitions in proteins. J. Phys. Chem. B 109 (1959–2005)

  42. Gaswick, D., Haim, A.: Direct measurement, of a first-order rate constant for an elementary electron transfer step. J. Am. Chem. Soc. 93, 7347–7348 (1971)

    Article  CAS  Google Scholar 

  43. Ismail, A.M.: Indian J. Chem. 47, 49–52 (2008)

    Google Scholar 

  44. Nagaraj, K.; Arunachalam, S. Synthesis and electron transfer kinetics of a surfactant–cobalt(III) complex: effects of micelles, β-cyclodextrin and ionic liquids. Trans. Met. Chem. doi:10.1007/s11243-013-9733-5

  45. Baldwin, M.E.: The Infrared Spectra of cobalt(III) ethylenediamine complexes. Part 1. Vibrations of the ethylenediamine chelate ring. J. Chem. Soc. 2, 4369–4378 (1960)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the UGC–COSIST and DST–FIST programmes of the Department of Chemistry, Bharathidasan University, and UGC–RFSMS fellowship to one of the authors, K. Nagaraj, by Bharathidasan University. Financial assistance from the CSIR (Grant No. 01(2461)/11/EMR-II), DST (Grant No. SR/S1/IC-13/2009) and UGC (Grant No. 41-223/2012(SR) sanctioned to S. Arunachalam are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaralingam Arunachalam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraj, K., Arunachalam, S. Synthesis, CMC determination and influence of the micelles, β-cyclodextrin, ionic liquids and liposome(dipalmitoylphosphatidylcholine) vesicles on the kinetics of an outer-sphere electron transfer reaction. J Incl Phenom Macrocycl Chem 79, 425–435 (2014). https://doi.org/10.1007/s10847-013-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0365-3

Keywords

Navigation