Advertisement

Evaluation of different PAMAM dendrimers as molecular vehicle of 1,2,4-triazine N-oxide derivative with potential antitumor activity

  • Nahir Dib
  • Luciana FernándezEmail author
  • Mercedes Gonzalez
  • Hugo Cerecetto
  • Edgardo Durantini
  • Luis Otero
  • Marisa Santo
Original Article

Abstract

The interaction between a 1,2,4-triazine N-oxide derivative, that holds potential antitumor activity under hypoxic conditions, and diverse polyamidoamine (PAMAM) dendrimers were investigated with the purpose of select the most appropriate macromolecule to act as potential molecular carrier of this active compound. The results shows that dendrimers with amine terminal groups (PAMAM-AT G = 3) and dendrimers with carboxylate terminal groups (PAMAM-CT G2.5 and G4.5) produces triazine derivative hydrolysis, even in buffered medium, and are not suitable as carriers. In contrast, dendrimers with neutral end groups (PAMAM-OHT) shows stable association with the active compound, making this dendrimer a possible medium for triazine carriage.

Keywords

Dendrimers PAMAM Triazine N-oxide Host–guest association Antitumor drug stability 

Notes

Acknowledgments

Financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT-Argentina), Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC), is gratefully acknowledged.

References

  1. 1.
    Sztanke, K., Pasternak, K., Rajtar, B., Sztanke, M., Majek, M., Polz-Dacewicz, M.: Identification of antibacterial and antiviral activities of novel fused 1,2,4-triazine esters. Bioorg. Med. Chem. 15, 5480–5486 (2007)CrossRefGoogle Scholar
  2. 2.
    Diana, P., Barraja, P., Lauria, A., Montalbano, A., Almerico, A.M., Dattolo, G., Cirrincione, G.: Pyrrolo[2,1-c][1,2,4]triazines from 2-diazopyrroles: synthesis and antiproliferative activity. Eur. J. Med. Chem. 37, 267–272 (2002)CrossRefGoogle Scholar
  3. 3.
    Hay, M.P., Hicks, K.O., Pchalek, K., Lee, H.H., Blaser, A., Pruijn, F.B., Anderson, R.F., Shinde, S.S., Wilson, W.R., Denny, W.A.: Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins. J. Med. Chem. 51, 6853–6865 (2008)CrossRefGoogle Scholar
  4. 4.
    Patil, S.A., Otter, B.A., Klein, R.S.: 4-aza-7,9-dideazaadenosine, a new cytotoxic synthetic C-nucleoside analog of adenosine. Tetrahedron Lett. 35, 5339–5342 (1994)CrossRefGoogle Scholar
  5. 5.
    Hay, M.P., Pchalek, K., Pruijn, F.B., Hicks, K.O., Siim, B.G., Anderson, R.F., Shinde, S.S., Phillips, V., Denny, W.A., Wilson, W.R.: Hypoxia-selective 3-alkyl 1,2,4-benzotriazine 1,4-dioxides: the influence of hydrogen bond donors on extravascular transport and antitumor activity. J. Med. Chem. 50, 6654–6664 (2007)CrossRefGoogle Scholar
  6. 6.
    Imbaraj, J.J., Motten, A.G., Chignell, C.F.: Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-di-N-oxide analogues. Chem. Res. Toxicol. 16(2), 164–170 (2003)CrossRefGoogle Scholar
  7. 7.
    Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)CrossRefGoogle Scholar
  8. 8.
    Kaminskas, L.M., McLeod, V.M., Porter, C.J.H., Boyd, B.J.: Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol. Pharmaceutics 9, 355–373 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Grayson, S.M.: Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv. Drug. Deliver. Rev. 64, 852–865 (2012)CrossRefGoogle Scholar
  10. 10.
    Mintzer, M.A., Grinstaff, M.W.: Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 40, 173–190 (2011)CrossRefGoogle Scholar
  11. 11.
    Ionov, M., Gardikis, G., Wróbel, D., Hatziantoniou, S., Mourelatou, H., Majoral, J.P., Klajnert, B., Bryszewska, M., Demetzos, C.: Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids. Surf. B 82, 8–12 (2011)CrossRefGoogle Scholar
  12. 12.
    Quadir, M.A., Haag, R.: Biofunctional nanosystems based on dendritic polymers. J. Control Release 161, 484–495 (2012)CrossRefGoogle Scholar
  13. 13.
    Ciolkowski, M., Petersen, J.F., Ficker, M., Janaszewska, A., Christensen, J.B., Klajnert, B., Bryszewska, M.: Surface modification of PAMAM dendrimer improves its biocompatibility Nanomed. Nanotechnology 8, 815–817 (2012)Google Scholar
  14. 14.
    Szymanski, P., Markowicz, M., Mikiciuk-Olasik, E.: Nanotechnology in pharmaceutical and biomedical applications. Dendrimers Brief Rep. Rev. 6, 509–539 (2011)Google Scholar
  15. 15.
    Fernández, L., Sigal, E., Otero, L.: Silber., J.J., Santo, M.: Solubility improvement of anthelmintic benzimidazole carbamate by association with dendrimers. Braz. J. Chem. Eng. 28(4), 679–689 (2011)CrossRefGoogle Scholar
  16. 16.
    Davarakonda, B., Hill, R., Villiers, M.: The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Phar. 284, 133–140 (2004)CrossRefGoogle Scholar
  17. 17.
    Yiyun, C., Tongwen, X.: Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers. Eur. J. Med. Chem. 40, 1188–1192 (2005)CrossRefGoogle Scholar
  18. 18.
    Hu, J., Su, Y., Zhang, H., Xu, T., Cheng, Y.: Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials 32, 9950–9959 (2011)CrossRefGoogle Scholar
  19. 19.
    Ouyan, L., Ma, L., Jiang, B., Li, Y., He, D., Guo, L.: Synthesis of novel dendrimers having aspartate grafts and their ability to enhance the aqueous solubility of model drugs. Eur. J. Med. Chem. 45, 2705–2711 (2010)CrossRefGoogle Scholar
  20. 20.
    Cerecetto, H., González, M., Onetto, S., Saenz, P., Ezpeleta, O., De Ceráin, A.L., Monge, A.: 1, 2, 4-Triazine N-oxide derivatives: studies as potential hypoxic cytotoxins. Part II. Arch. Pharm. 337(5), 247–258 (2004)CrossRefGoogle Scholar
  21. 21.
    Cerecetto, H., González, M., Risso, M., Saenz, P., Olea-Azar, C., Bruno, A.M., Azqueta, A., De Ceráin, A.L., Monge, A.: 1, 2, 4-Triazine N-oxide derivatives: studies as potential hypoxic cytotoxins. Part III. Arch. Pharm. 337(5), 271–280 (2004)CrossRefGoogle Scholar
  22. 22.
    Kamlet, M.J., Abboud, J.L.M., Taft, R.W.: The Solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)CrossRefGoogle Scholar
  23. 23.
    Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1: a new general purpose quantum mechanical. J. Am. Chem. Soc. 107, 3902–3909 (1985)CrossRefGoogle Scholar
  24. 24.
    Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)CrossRefGoogle Scholar
  25. 25.
    Gupta, U., Agashe, H.B., Asthana, H., Jain, N.K.: Dendrimers: novel polymeric nanoarchitectures for solubility anhancement. Biomacromolecules 7(3), 649–658 (2006)CrossRefGoogle Scholar
  26. 26.
    Avila-Salas, F., Sandoval, C., Caballero, J., Guiñez-Molinos, S., Santos, L.S., Cachau, R.E., González-Nilo, F.D.: Study of interaction energies between the PAMAM dendrimer and nonsteroidal anti-inflammatory drug using a distributed computational strategy and experimental analysis by ESI-MS/MS. J. Phys. Chem. B 116, 2031–2039 (2012)CrossRefGoogle Scholar
  27. 27.
    Maingi, V., Kumar, M.V.S., Maiti, P.K.: PAMAM dendrimer − drug interactions: effect of pH on the binding and release pattern. J. Phys. Chem. B 116, 4370–4376 (2012)CrossRefGoogle Scholar
  28. 28.
    Reichardt, C.: Losungmittel-Effekte in der Organischen Chenie, 2nd edn. Verlang Chemie, Weiheim (1973)Google Scholar
  29. 29.
    Poole, J.S., Hadad, C.M., Platz, M.S., Fredin, Z.P., Pickard, L., Guerrero, E.L., Kessler, M., Chowdhury, G., Kotandeniya, D., Gates, K.S.: Photochemical Electron Transfer Reactions of Tirapazamine Photochem. Photobiology 75(4), 339–345 (2002)CrossRefGoogle Scholar
  30. 30.
    Chupakhin, O.N., Kozhevnikov, V.N., Prokhorov, A.M., Kozhevnikov, D.N., Rusinov, V.L.: The amidine rearrangement in 5-amino-6-aryl-1,2,4-triazine-4-oxides initiated by hydroxylamine. Tetrahedron Lett. 41, 7379–7382 (2000)CrossRefGoogle Scholar
  31. 31.
    Chelmecka, M.: Complexes of polyelectrolytes with defined charge distance and different dendrimer counterions. Dissertation pdf, Mainz (2004)Google Scholar
  32. 32.
    Kozhevnikov, D.N., Rusinov, V.L., Chupakhin, O.N.: 1,2,4-Triazine N-oxides and their annelated derivatives. Russ. Chem. Rev. 67, 633–648 (1948)CrossRefGoogle Scholar
  33. 33.
    D’Emanuele, A., Attwood, D.: Dendrimer–drug interactions. Adv. Drug Delivery Rev. 57, 2147–2162 (2005)CrossRefGoogle Scholar
  34. 34.
    Klajnert, B., Stanislawskaa, L., Bryszewska, M., Palecz, B.: Interactions between PAMAM dendrimers and bovine serum albumin. Biochim. Biophys. Acta. 1648, 115–126 (2003)CrossRefGoogle Scholar
  35. 35.
    Ottaviani, M.F., Montalti, F., Romanelli, M., Turro, N.J., Tomalia, D.A.: Characterization of starburst dendrimers by EPR. 4. Mn(II) as probe of interphase properties. J. Phys. Chem. 100, 11033–11042 (1996)CrossRefGoogle Scholar
  36. 36.
    Kleinman, M.H., Flory, J.H., Tomalia, D.A., Turro, N.J.: Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J. Phys. Chem. B 104, 11472–11479 (2000)CrossRefGoogle Scholar
  37. 37.
    Fernández, L., Santo, M., Silber, J.J., Cerecetto, H., Gonzalez, M.: Solubilization and release proper ties of dendrimer s. Evaluation as prospective drug delivery systems. Supramol. Chem. 18(8), 633–643 (2006)CrossRefGoogle Scholar
  38. 38.
    Morgan, M.T., Carnahan, M.A., Immoos, C.E., Ribeiro, A.A., Finkelstein, S., Lee, S.J., Grinstaff, M.W.: Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003)CrossRefGoogle Scholar
  39. 39.
    Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P.: Cancer therapy based on nanomaterials and nanocarrier systems. J. Nanomater. (2010). doi: 10.1155/2010/796303

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nahir Dib
    • 1
  • Luciana Fernández
    • 1
    Email author
  • Mercedes Gonzalez
    • 2
  • Hugo Cerecetto
    • 2
  • Edgardo Durantini
    • 1
  • Luis Otero
    • 1
  • Marisa Santo
    • 1
  1. 1.Departamento de Física. Departamento de QuímicaUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Grupo de Química Medicinal-Laboratorio de Química Orgánica. Facultad de Química. Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations