Advertisement

Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin

  • Nagaraju M. Patro
  • Azmi Sultana
  • Keiji Terao
  • Daisuke Nakata
  • Ayako Jo
  • Akihito Urano
  • Yoshiyuki Ishida
  • Raghu N. Gorantla
  • Vinay Pandit
  • Kshama Devi
  • Shishir Rohit
  • Baljinder K. Grewal
  • Elizabeth M. Sophia
  • Anand Suresh
  • Vineeth K. Ekbote
  • Sarasija SureshEmail author
Original Article

Abstract

In the present study investigated the effect of curcumin (CUR) alpha (α), beta (β) and gamma (γ) cyclodextrin (CD) complexes on its solubility and bioavailability. CUR the active principle of turmeric is a natural antioxidant agent with potent anti-inflammatory activity along with chemotherapeutic and chemopreventive properties. Poor solubility and poor oral bioavailability are the main reasons which preclude CUR use in therapy. Extent of complexation was β-CD complex (82 %) > γ-CD (71 %) > α-CD (65 %). Pulverization method resulted in significant enhancement of CUR (0.002 mg/ml) solubility with CUR α-CD complex (0.364 mg/ml) > CUR β-CD complex (0.186 mg/ml) > CUR γ-CD complex (0.068 mg/ml). Gibbs-free energy and in silico molecular docking studies favour formation of α-CD complex > β-CD complex > γ-CD complex. With reference to CUR, relative bioavailability of CUR α-CD, CUR β-CD and CUR γ-CD complexes were 460, 365 and 99 % respectively. CUR–CD complexes exhibited increased bioavailability with an increase in t½, tmax, Cmax, AUC, Ka, and MRT; and a decrease in Ke, clearance and Vd values. AUC increase was CUR α-CD complex > CUR β-CD complex > CUR γ-CD complex. Significant difference (p < 0.05) was observed between CUR α-CD complex and CUR γ-CD complex by one-way ANOVA and Dunnett’s post hoc test for multiple comparison analysis. Correlation observed between in vitro, in vivo and in silico methods indicates potential of in silico and in vitro methods in CD selection.

Keywords

Curcumin Alpha cyclodextrin Beta cyclodextrin Gamma cyclodextrin Solubility Bioavailability 

Notes

Acknowledgments

Authors would like to thank Prof. B.G. Shivananda, Principal, Al-Ameen College of Pharmacy for his kind support and encouragement to carry out this project.

References

  1. 1.
    Aggarwal, B.B., Sundaram, C., Malani, N., Ichikawa, H.: Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 (2007)CrossRefGoogle Scholar
  2. 2.
    Huang, H.C., Jan, T.R., Yeh, S.F.: Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur. J. Pharmacol. 221, 381–384 (1992)CrossRefGoogle Scholar
  3. 3.
    Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., Cole, G.M.: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370–8377 (2001)Google Scholar
  4. 4.
    Natarajan, C., Bright, J.J.: Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signalling through Janus kinase-STAT pathway in T lymphocytes. J. Immunol. 168, 6506–6513 (2002)Google Scholar
  5. 5.
    Mazumder, A., Neamati, N., Sunder, S., Schulz, J., Pertz, H., Eich, E., Pommier, Y.: Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J. Med. Chem. 40, 3057–3063 (1997)CrossRefGoogle Scholar
  6. 6.
    Awasthi, S., Srivastava, S.K., Piper, J.T., Singhal, S.S., Chaubey, M., Awasthi, Y.C.: Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am. J. Clin. Nutr. 64, 761–766 (1996)Google Scholar
  7. 7.
    Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J.R., Das, P.K.: Curcumin, the major component of food flavor turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br. J. Pharmacol. 139, 209–218 (2005)CrossRefGoogle Scholar
  8. 8.
    Aggarwal, B.B., Kumar, A., Bharti, A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)Google Scholar
  9. 9.
    Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B.: Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20, 7597–7609 (2001)CrossRefGoogle Scholar
  10. 10.
    Shishodia, S., Potdar, P., Gairola, C.G., Aggarwal, B.B.: Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269–1279 (2003)CrossRefGoogle Scholar
  11. 11.
    Mehta, K., Pantazis, P., McQueen, T., Aggarwal, B.B.: Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470–481 (1997)CrossRefGoogle Scholar
  12. 12.
    Elattar, T.M., Virji, A.S.: The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res. 20, 1733–1738 (2000)Google Scholar
  13. 13.
    Hanif, R., Qiao, L., Shiff, S.J., Rigas, B.: Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J. Lab. Clin. Med. 130, 576–584 (1997)CrossRefGoogle Scholar
  14. 14.
    Aggarwal, B.B., Swaroop, P., Protiva, P., Raj, S.V., Shirin, H., Holt, P.R.: Cox-2 is needed but not sufficient for apoptosis induced by Cox- selective inhibitors in colon cancer cells. Apoptosis 8, 649–654 (2003)CrossRefGoogle Scholar
  15. 15.
    Thangapazham, R.L., Sharma, A., Maheshwari, R.K.: Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J. 8, E443–E449 (2006)CrossRefGoogle Scholar
  16. 16.
    Joe, B., Vijaykumar, M., Lokesh, B.R.: Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 44, 97–111 (2004)CrossRefGoogle Scholar
  17. 17.
    Yadav, V.R., Prasad, S., Kannappan, R., Ravindran, J., Chaturvedi, M.M., Vaahtera, L., Parkkinen, J., Aggarwal, B.B.: Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem. Pharmacol. 80, 1021–1032 (2010)CrossRefGoogle Scholar
  18. 18.
    Tonnesen, H.H., Masson, M., Loftsson, T.: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 244, 127–135 (2002)CrossRefGoogle Scholar
  19. 19.
    Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B.: Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007)CrossRefGoogle Scholar
  20. 20.
    Loftson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  21. 21.
    Del Valle, Martin: E.M.: cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  22. 22.
    Vivek, R.Y., Sarasija, S., Kshama, D., Seema, Y.: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS Pharm. Sci. Tech. 10, 752–762 (2009)CrossRefGoogle Scholar
  23. 23.
    Wieslawa, M., Magdalena, Z.: Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 77, 482–488 (2009)CrossRefGoogle Scholar
  24. 24.
    Zoppetti, G., Puppini, N., Pizzutti, M., Fini, A., Giovani, T., Comini, S.: Water soluble progesterone–hydroxypropyl-b-cyclodextrin complex for injectable formulations. J. Incl. Phenom. Macrocycl. Chem. 57, 283–288 (2007)CrossRefGoogle Scholar
  25. 25.
    Swati, R., Sanjay, K.: Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Euro. J. Pharma. Biopharm. 57, 263–267 (2004)CrossRefGoogle Scholar
  26. 26.
    Higuchi, T., Connors, K.: Phase solubility techniques. In: Reilly, C. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley–Interscience, New York (1965)Google Scholar
  27. 27.
    Ronald, L.H., Jason, L.M., Krystle, A.Y., Julie, A.I.H., Kevin, A.W.: Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 66, 231–241 (2010)CrossRefGoogle Scholar
  28. 28.
    Christensen, M.B.V., Abouhachem, M., Svensson, B., Henriksen, A.: Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins. J. Mol. Bio. 405, 739–750 (2010)CrossRefGoogle Scholar
  29. 29.
    Tonozuka, T., Sogawa, A., Yamada, M., Matsumoto, N., Yoshida, H., Kamitori, S., Ichikawa, K., Mizuno, M., Nishikawa, A., Sakano, Y.: Structural basis for cyclodextrin recognition by Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein. FEBS J. 274, 2109–2120 (2007)CrossRefGoogle Scholar
  30. 30.
    Gasteiger, J., Marsili, M.: Iterative partial equalization of orbital electro negativity a rapid access to atomic charges. Tetrahedron 36, 3219–3228 (1980)CrossRefGoogle Scholar
  31. 31.
    Monica, R., Amrita, B., Ishwar, K., Ghanshyam, M., Francesco, T.: In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl, Chem (2012)Google Scholar
  32. 32.
    Powell, M.J.D.: Restart procedures for conjugate gradient method program. Math. Prog. 12, 241–254 (1977)CrossRefGoogle Scholar
  33. 33.
    SYBYL7.1, Tripos Associates INC: S. Henley Rd., St. Louis, MO631444, USA. (1699)Google Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.: Gaussian-03 suite of programs. Gaussian Inc, Pittsburgh (2003)Google Scholar
  35. 35.
    Emami, J.: In vitro-in vivo correlation: from theory to application. J. Pharm. Pharmaceut. Sci. 9, 169–189 (2006)Google Scholar
  36. 36.
    Patel, R.P., Patel, M.M.: Preparation and evaluation of inclusion complex of lipid lowering drug lovastatin with β-cyclodextrin. Dhaka Univ. J. Pharm. Sci. 6, 25–36 (2007)CrossRefGoogle Scholar
  37. 37.
    Baglole, K. N., Boland, P. G., Wagner, B. D.: Fluorescence enhancement of curcumin upon inclusion into parent and modiGoogle Scholar
  38. 38.
    Mark, E.D., Marcus, E.B.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  39. 39.
    Krishna Mohan, P.R., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R.: Water soluble complexes of curcumin with cyclodextrin: characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77–84 (2012)CrossRefGoogle Scholar
  40. 40.
    Gupta, N.K., Dixit, V.K.: Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J. Pharm. Sci. 100, 1987–1995 (2011)CrossRefGoogle Scholar
  41. 41.
    Kemp, D.C., Fan, P.W., Stevens, J.C.: Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to pre-systemic clearance. Drug Metab. Dispos. 30, 694–700 (2002)CrossRefGoogle Scholar
  42. 42.
    Wempe, M.F., Wacher, V.J., Ruble, K.M., Ramsey, M.G., Edgar, K.J., Buchanan, N.L., Buchanan, C.M.: Pharmacokinetics of raloxifene in male Wistar-Hannover rats: influence of complexation with hydroxybutenyl-beta-cyclodextrin. Int. J. Pharm. 346, 25–37 (2008)CrossRefGoogle Scholar
  43. 43.
    Lu, Y., Kim, S., Park, K.: In vitro-in vivo correlation: perspectives on model development. Int. J. Pharm. 418, 142–148 (2011)CrossRefGoogle Scholar
  44. 44.
    Cardot, J.M., Beyssac, E., Alric, M.: In vitro–in vivo correlation: importance of dissolution in IVIVC. Disso. Tech. 15–16 (2007)Google Scholar
  45. 45.
    Vinay, P., Raghu, G., Kusum, D., Roopa, S.P., Sarasija, S.: Preparation and characterization of Pioglitazone cyclodextrin inclusion complexes. J. Young. Pharma. 3, 267–274 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nagaraju M. Patro
    • 1
  • Azmi Sultana
    • 1
  • Keiji Terao
    • 2
  • Daisuke Nakata
    • 2
  • Ayako Jo
    • 2
  • Akihito Urano
    • 2
  • Yoshiyuki Ishida
    • 2
  • Raghu N. Gorantla
    • 1
  • Vinay Pandit
    • 1
  • Kshama Devi
    • 1
  • Shishir Rohit
    • 3
  • Baljinder K. Grewal
    • 3
  • Elizabeth M. Sophia
    • 3
  • Anand Suresh
    • 1
  • Vineeth K. Ekbote
    • 3
  • Sarasija Suresh
    • 1
    • 3
    Email author
  1. 1.Al-Ameen College of PharmacyBangaloreIndia
  2. 2.Cyclochem Co., LtdTokyoJapan
  3. 3.National Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia

Personalised recommendations