Advertisement

Water-soluble fullerenes using solubilizing agents, and their applications

  • Atsushi IkedaEmail author
Review Article

Abstract

Host–guest and supramolecular chemistry can produce water-solubilization of fullerenes such as C60, C70, and C60/70 derivatives by hydrophobic interactions, CH–π interactions, and/or π–π interactions. For materials and biomedical applications, these water-soluble host–fullerene complexes must have the following important properties: (i) high solubility, (ii) high stability, and (iii) functionalization of the host–fullerene complex. These objectives can be achieved by selection of appropriate host molecules, development of novel solubilizing methods, and synthesis of functionalized host molecules. This review describes the introduction of a variety of host molecules that can solubilize fullerenes in water. In addition, we describe applications of host–fullerene complexes, in particular using photoinduced energy- and electron-transfer processes in water.

Keywords

Cyclodextrin Calixarene Liposome Host–guest chemistry Fullerene Photosensitizer 

Abbreviations

BP

Block copolymer

BPMIC60

BP micelle-incorporated C60

CV

Cyclic voltammetry

EDOT

Ethylenedioxythiophene

ITO

Indium tin oxide

LMICx

Lipid membrane-incorporated C x (x = 60 or 70)

PDT

Photodynamic therapy

PI

Propidium iodide

PS

Photosensitizer

PVP

Polyvinylpyrrolidone

ROS

Reactive oxygen species

Tm

Phase-transition temperature

Notes

Acknowledgments

The author thanks the organizing committee of the Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2012, and the opportunity to write this review. The author is grateful to all of the collaborators for their contributions. His work was financially supported by a Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

This is a paper selected for the ‘‘HGCS Japan Award of Excellence 2012’’.

References

  1. 1.
    Konishi, T., Ikeda, A., Shinkai, S.: Supramolecular design of photocurrent-generating devices using fullerenes aimed at modelling artificial photosynthesis. Tetrahedron 61, 4881–4899 (2005)Google Scholar
  2. 2.
    Ikeda, A.: Supramolecular design of photocurrent generators toward modeling of photosynthesis systems. In: Ariga, K., Nalwa, H.S. (eds.) Bottom-up nanofabrication: supramolecules, self-assemblies, and organized films, vol. 2, pp. 437–450. American Scientific Publishers, Los Angeles (2009)Google Scholar
  3. 3.
    Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., Alvarez, M.M., Anz, S.J., Whetten, R.L.: Photophysical properties of C60. J. Phys. Chem. 95, 11–12 (1991)Google Scholar
  4. 4.
    Martín, N., Sánchez, L., Illescas, B.M., Pérez, I.: C60-based electroactive organofullerenes. Chem. Rev. 98, 2527–2548 (1998)Google Scholar
  5. 5.
    Yano, S., Hirohara, S., Obata, M., Hagiya, Y., Ogura, S., Ikeda, A., Kataoka, H., Tanaka, M., Joh, T.: Current states and future views in photodynamic therapy. J. Photochem. Photobiol. C 12, 46–67 (2011)Google Scholar
  6. 6.
    Da Ros, T., Prato, M.: Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 35, 663–669 (1999)Google Scholar
  7. 7.
    An, Y.-Z., Chen, C.-H.B., Anderson, J.L., Sigman, D.S., Foote, C.S., Rubin, Y.: Sequence-specific modification of guanosine in DNA by a C60-linked deoxyoligonucleotide: evidence for a nonsinglet oxygen mechanism. Tetrahedron 52, 5179–5189 (1996)Google Scholar
  8. 8.
    Boutorine, A.S., Takasugi, M., Hélène, C., Tokuyama, H., Isobe, H., Nakamura, E.: Fullerene oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew. Chem. Int. Ed. 33, 2462–2465 (1995)Google Scholar
  9. 9.
    Nakamura, E., Tokuyama, H., Yamago, S., Shiraki, T., Sugiura, Y.: Biological activity of water-soluble fullerenes. Structural dependence of DNA cleavage, cytotoxicity, and enzyme inhibitory activities including HIV-protease inhibition. Bull. Chem. Soc. Jpn. 69, 2143–2151 (1996)Google Scholar
  10. 10.
    Tokuyama, H., Yamago, S., Nakamura, E., Shiraki, T., Sugiura, Y.: Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 115, 7918–7919 (1993)Google Scholar
  11. 11.
    Yamakoshi, Y.N., Yagami, T., Sueyoshi, S., Miyata, N.: Acridine adduct of [60]fullerene with enhanced DNA-cleaving activity. J. Org. Chem. 61, 7236–7237 (1996)Google Scholar
  12. 12.
    Higashi, N., Inoue, T., Niwa, M.: Immobilization cleavage of DNA at cationic, self-assembled monolayers containing C60 on gold. Chem. Commun. 33, 1507–1508 (1997) Google Scholar
  13. 13.
    Iwamoto, Y., Yamakoshi, Y.: A highly water-soluble C60-NVP copolymer: a potential material for photodynamic therapy. Chem. Commun. 42, 4805–4807 (2006)Google Scholar
  14. 14.
    Friedman, S.H., Decamp, D.L., Sijbesma, R.P., Srdanov, G., Wudl, F., Kenyon, G.L.: Inhibition of the HIV-1 protease by fullerene derivatives-model-building studies and experimental-verification. J. Am. Chem. Soc. 115, 6506–6509 (1993)Google Scholar
  15. 15.
    Friedman, S.H., Ganapathi, P.S., Rubin, Y., Kenyon, G.L.: Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J. Med. Chem. 41, 2424–2429 (1998)Google Scholar
  16. 16.
    Bosi, S., Da Ros, T., Spalluto, G., Prato, M.: Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913–923 (2003)Google Scholar
  17. 17.
    Nakamura, E., Isobe, H.: Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003)Google Scholar
  18. 18.
    Nielsen, G.D., Roursgaard, M., Jensen, K.A., Poulsen, S.S., Larsen, S.T.: In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin. Pharmacol. Toxicol. 103, 197–208 (2008)Google Scholar
  19. 19.
    Diederich, F., Gomez-Lopez, M.: Supramolecular fullerene chemistry. Chem. Soc. Rev. 28, 263–277 (1999)Google Scholar
  20. 20.
    Kawase, T., Kurata, H.: Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π–π interaction. Chem. Rev. 106, 5250–5273 (2006)Google Scholar
  21. 21.
    Ikeda, A.: Fullerene encapsulation. In: Sattler, K.D. (ed.) Handbook of nanophysics: clusters and fullerenes, vol. 2, pp. 41-1–41-17. CRC, Florida (2011)Google Scholar
  22. 22.
    Andersson, T., Nilsson, K., Sundahl, M., Westman, G., Wennerström, O.: C60 embedded in γ-cyclodextrin: a water-soluble fullerene. J. Chem. Soc., Chem. Commun. 28, 604–606 (1992) Google Scholar
  23. 23.
    Yoshida, Z., Takekuma, H., Takekuma, S., Matsubara, Y.: Molecular recognition of C60 with γ-cyclodextrin. Angew. Chem. Int. Ed. 33, 1597–1599 (1994)Google Scholar
  24. 24.
    Komatsu, K., Fujiwara, K., Murata, Y., Braun, T.: Aqueous solubilization of crystalline fullerenes by supramolecular complexation with γ-cyclodextrin and sulfocalix[8]arene under mechanochemical high-speed vibration milling. J. Chem. Soc., Perkin Trans. 1 28, 2963–2966 (1999)Google Scholar
  25. 25.
    Braun, T., Buvári-Barcza, Á., Barcza, L., Konkoly-Thege, I., Fodor, M., Migali, B.: Mechanochemistry: a novel approach to the synthesis of fullerene compounds. Water soluble buckminsterfullerene-γ-cyclodextrin inclusion complexes via a solid–solid reaction. Solid State Ion. 74, 47–51 (1994)Google Scholar
  26. 26.
    Takekuma, S., Takekuma, H., Matsumoto, T., Yoshida, Z.: Influence of metal complexes on the formation of γ-cyclodextrin-bicapped C60n (n: 1 and 2) in aqueous solution. Tetrahedron Lett. 41, 1043–1046 (2000)Google Scholar
  27. 27.
    Takekuma, S., Takekuma, H., Matsumoto, T., Yoshida, Z.: A highly efficient generation of γ-cyclodextrin-bicapped C60–1 in aqueous solution. Tetrahedron Lett. 41, 4909–4912 (2000)Google Scholar
  28. 28.
    Andersson, T., Sundahl, M., Westman, G., Wennerström, O.: Host-guest chemistry of fullerenes: a water-soluble complex between C70 and γ-cyclodextrin. Tetrahedron Lett. 35, 7103–7106 (1994)Google Scholar
  29. 29.
    Murthy, C.N., Geckeler, K.E.: The water-soluble β-cyclodextrin–[60]fullerene complex. Chem. Commun. 37, 1194–1195 (2001)Google Scholar
  30. 30.
    Zhang, D.-D., Chen, J.-W., Ying, Y., Cai, R.-F., Shen, X.-L., Wu, S.-H.: Studies on methylated β-cyclodextrins and C60 inclusion complexes. J. Inclusion Phenom. 16, 245–253 (1993)Google Scholar
  31. 31.
    Furuishi, T., Endo, T., Nagase, H., Ueda, H., Nagai, T.: Solubilization of C70 into water by complexation with δ-cyclodextrin. Chem. Pharm. Bull. 46, 1658–1659 (1998)Google Scholar
  32. 32.
    Fukami, T., Mugishima, A., Suzuki, T., Hidaka, S., Endo, T., Ueda, H., Tomono, K.: Enhancement of water solubility of fullerene by cogrinding with mixture of cycloamyloses, novel cyclic α-1,4-glucans, via solid–solid mechanochemical reaction. Chem. Pharm. Bull. 52, 961–964 (2004)Google Scholar
  33. 33.
    Kuroda Y., Nozawa H., Ogoshi H.: Kinetic behaviors of solubilization of C60 into water by complexation with γ-cyclodextrin. Chem. Lett. 24, 47–48 (1995) Google Scholar
  34. 34.
    Ikeda, A., Genmoto, T., Maekubo, N., Kikuchi, J., Akiyama, M., Mochizuki, T., Kotani, S., Konishi, T.: Water-soluble inclusion complexes of [60]fullerene derivatives using γ-cyclodextrin. Chem. Lett. 39, 1256–1257 (2010)Google Scholar
  35. 35.
    Ikeda, A., Aono, R., Maekubo, N., Katao, S., Kikuchi, J., Akiyama, M.: Pseudorotaxane structure of a fullerene derivative-cyclodextrin 1:2 complex. Chem. Commun. 47, 12795–12797 (2011)Google Scholar
  36. 36.
    Raffaini, G., Ganazzoli, F.: A molecular dynamics study of the inclusion complexes of C60 with some cyclodextrins. J. Phys. Chem. B 114, 7133–7139 (2010)Google Scholar
  37. 37.
    Ikeda, A., Hatano, T., Konishi, T., Kikuchi, J., Shinkai, S.: Host-guest complexation effect of 2,3,6-tri-O-methyl-β-cyclodextrin on a C60-porphyrin light-to-photocurrent conversion system. Tetrahedron 59, 3537–3540 (2003)Google Scholar
  38. 38.
    Konishi, T., Ikeda, A., Asai, M., Hatano, T., Shinkai, S., Fujitsuka, M., Ito, O., Tsuchiya, Y., Kikuchi, J.: Improvement of quantum yields for photoinduced energy/electron transfer by isolation of self-aggregative zinc tetraphenyl porphyrin-pendant polymer using cyclodextrin inclusion in aqueous solution. J. Phys. Chem. B 107, 11261–11266 (2003)Google Scholar
  39. 39.
    Zhao, B.Z., Bilski, P.J., He, Y.Y., Feng, L., Chignell, C.F.: Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C60) and their cytotoxicity in human keratinocytes. Photochem. Photobiol. 84, 1215–1223 (2008)Google Scholar
  40. 40.
    Zhao, B.Z., He, Y.Y., Chignell, C.F., Yin, J.J., Andley, U., Roberts, J.E.: Difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem. Res. Toxicol. 22, 660–667 (2009)Google Scholar
  41. 41.
    Araki, K., Akao, K., Ikeda, A., Suzuki, T., Shinkai, S.: Molecular design of calixarene-based host molecules for inclusion of C60 in solution. Tetrahedron Lett. 37, 73–76 (1996)Google Scholar
  42. 42.
    Haino, T., Yanase, M., Fukazawa, Y.: New supramolecular complex of C60 based on calix[5]arene–its structure in the crystal and in solution. Angew. Chem. Int. Ed. 36, 259–260 (1997)Google Scholar
  43. 43.
    Ikeda, A., Yoshimura, M., Shinkai, S.: Solution complexes formed from C60 and calixarenes. On the importance of the preorganized structure for coorperative interactions. Tetrahedron Lett. 38, 2107–2110 (1997)Google Scholar
  44. 44.
    Haino, T., Yanase, M., Fukazawa, Y.: Fullerenes enclosed in bridged calix[5]arenes. Angew. Chem. Int. Ed. Engl. 37, 997–998 (1998)Google Scholar
  45. 45.
    Ikeda, A., Yoshimura, M., Udzu, H., Fukuhara, C., Shinkai, S.: Inclusion of [60]fullerene in a homooxacalix[3]arene-based dimeric capsule cross-linked by a Pd(II)-pyridine interaction. J. Am. Chem. Soc. 121, 4296–4297 (1999)Google Scholar
  46. 46.
    Williams, R.M., Verhoeven, J.M.: Supramolecular encapsulation of C60 in a water-soluble calixarene: a core-shell charge-transfer complex. Recl. Trav. Chim. Pays-Bas 111, 531–532 (1992)Google Scholar
  47. 47.
    Ikeda, A., Hatano, T., Kawaguchi, M., Suenaga, H., Shinkai, S.: Water-soluble [60]fullerene-cationic homooxacalix[3]arene complex which is applicable to the photocleavage of DNA. Chem. Commun. 15, 1403–1404 (1999)Google Scholar
  48. 48.
    Kunsági-Máté, S., Szabó, K., Bitter, I., Nagy, G., Kollár, L.: Complex formation between water-soluble sulfonated calixarenes and C60 fullerene. Tetrahedron Lett. 45, 1387–1390 (2004)Google Scholar
  49. 49.
    Kunsági-Máté, S., Vasapollo, G., Szabó, K., Bitter, I., Mele, G., Longo, L., Kollár, L.: Effect of covalent functionalization of C60 fullerene on its encapsulation by water soluble calixarenes. J. Incl. Phenom. Macrocycl. Chem. 60, 71–78 (2008)Google Scholar
  50. 50.
    Rio, Y., Nierengarten, J.-F.: Water soluble supramolecular cyclotriveratrylene-[60]fullerene complexes with potential for biological applications. Tetrahedron Lett. 43, 4321–4324 (2002)Google Scholar
  51. 51.
    Yang, F., Chen, Q., Cheng, Q.Y., Yan, C.G., Han, B.H.: Sugar-functionalized water-soluble cyclotriveratrylene derivatives: preparation and interaction with fullerene. J. Org. Chem. 77, 971–976 (2012)Google Scholar
  52. 52.
    Bensasson, R.V., Bienvenue, E., Dellinger, M., Leach, S., Seta, P.: C60 in model biological-systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation. J. Phys. Chem. 98, 3492–3500 (1994)Google Scholar
  53. 53.
    Eastoe, J., Crooks, E.R., Beeby, A., Heenan, R.K.: Structure and photophysics in C60-micellar solutions. Chem. Phys. Lett. 245, 571–577 (1995)Google Scholar
  54. 54.
    Yamakoshi, Y.N., Yagami, T., Fukuhara, K., Sueyoshi, S., Miyata, N.: Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun. 30, 517–518 (1994)Google Scholar
  55. 55.
    Tsuchiya, T., Yamakoshi, Y., Miyata, N.: A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem. Biophys. Res. Commun. 206, 885–894 (1995)Google Scholar
  56. 56.
    Tsuchiya, T., Oguri, I., Yamakoshi, Y., Miyata, N.: Effect of [60]fullerene on the chondrogenesis in mouse embryonic limb bud cell culture system. Fullerene Sci. Technol. 4, 989–999 (1996)Google Scholar
  57. 57.
    Tsuchiya, T., Oguri, I., Yamakoshi, Y.N., Miyata, N.: Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 393, 139145 (1996)Google Scholar
  58. 58.
    Mountrichas, G., Pispas, S., Xenogiannopoulou, E., Aloukos, P., Couris, S.: Aqueous dispersions of C60 fullerene by use of amphiphilic block copolymers: preparation and nonlinear optical properties. J. Phys. Chem. B 111, 4315–4319 (2007)Google Scholar
  59. 59.
    Nápoles-Duarte, J.M., López-Sandoval, R., Gorbatchev, A.Y., Reyes-Reyes, M., Carroll, D.L.: Encapsulation of the fullerene derivative [6, 6]-phenyl-C61-butyric acid methyl ester inside micellar structures. J. Phys. Chem. C 113, 13677–13682 (2009)Google Scholar
  60. 60.
    Akiyama, M., Ikeda, A., Shintani, T., Doi, Y., Kikuchi, J., Ogawa, T., Yogo, K., Takeya, T., Yamamoto, N.: Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities. Org. Biomol. Chem. 6, 1015–1019 (2008)Google Scholar
  61. 61.
    He, C.L., Kim, S.W., Lee, D.S.: In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Controlled Release 127, 189–207 (2009)Google Scholar
  62. 62.
    Augusto, V., Baleizão, C., Berberan-Santos, M.N., Farinha, J.P.S.: Oxygen-proof fluorescence temperature sensing with pristine C70 encapsulated in polymer nanoparticles. J. Mater. Chem. 20, 1192–1197 (2010)Google Scholar
  63. 63.
    Lian, T., Ho, R.J.Y.: Trends and developments in liposome drug delivery systems. J. Pharm. Sci 90, 667–680 (2001)Google Scholar
  64. 64.
    Derycke, A.S., de Witte, P.A.: Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 56, 17–30 (2004)Google Scholar
  65. 65.
    Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005)Google Scholar
  66. 66.
    Lasic, D.D., Templeton, N.S.: Liposomes in gene delivery. Adv. Drug Deliv. Rev. 20, 221–266 (1996)Google Scholar
  67. 67.
    Hungerbühler, H., Guldi, D.M., Asmus, K.D.: Incorporation of C60 into artificial lipid-membranes. J. Am. Chem. Soc. 115, 3386–3387 (1993)Google Scholar
  68. 68.
    Bangham, A.D., Standish, M.M., Watkins, J.C.: Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965)Google Scholar
  69. 69.
    Zhou, Z.G., Lenk, R.P., Dellinger, A., Wilson, S.R., Sadler, R., Kepley, C.L.: Liposomal formulation of amphiphilic fullerene antioxidants. Bioconj. Chem. 21, 1656–1661 (2010)Google Scholar
  70. 70.
    Ikeda, A., Sato, T., Kitamura, K., Nishiguchi, K., Sasaki, Y., Kikuchi, J., Ogawa, T., Yogo, K., Takeya, T.: Efficient photocleavage of DNA utilizing water-soluble lipid membrane incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org. Biomol. Chem. 3, 2907–2909 (2005)Google Scholar
  71. 71.
    Ikeda, A., Mori, M., Kiguchi, K., Yasuhara, K., Kikuchi, J., Nobusawa, K., Akiyama, M., Hashizume, M., Ogawa, T., Takeya, T.: Advantages and potential of lipid-membrane-incorporating fullerenes prepared by the fullerene-exchange method. Chem. Asian J. 7, 605–613 (2012)Google Scholar
  72. 72.
    Ikeda, A., Sue, T., Akiyama, M., Fujioka, K., Shigematsu, T., Doi, Y., Kikuchi, J., Konishi, T., Nakajima, R.: Preparation of highly photosensitizing liposomes with fullerene-doped lipid bilayer using dispersion-controllable molecular exchange reactions. Org. Lett. 10, 4077–4080 (2008)Google Scholar
  73. 73.
    Ikeda, A., Doi, Y., Hashizume, M., Kikuchi, J., Konishi, T.: An extremely effective DNA photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J. Am. Chem. Soc. 129, 4140–4141 (2007)Google Scholar
  74. 74.
    Ikeda, A., Nagano, M., Akiyama, M., Matsumoto, M., Ito, S., Mukai, M., Hashizume, M., Kikuchi, J., Katagiri, K., Ogawa, T., Takeya, T.: Photodynamic activity C70 caged within surface-cross-linked liposomes. Chem. Asian J. 4, 199–205 (2009)Google Scholar
  75. 75.
    Ikeda, A., Kawai, Y., Kikuchi, J., Akiyama, M.: Effect of phase transition temperature of liposomes on preparation of fullerene-encapsulated liposomes by the fullerene-exchange reaction. Chem. Commun. 46, 2847–2849 (2010)Google Scholar
  76. 76.
    Ikeda, A., Kawai, Y., Kikuchi, J., Akiyama, M., Nakata, E., Uto, Y., Hori, H.: Formation and regulation of fullerene-incorporation in liposomes under the phase transition temperature. Org. Biomol. Chem. 9, 2622–2627 (2011)Google Scholar
  77. 77.
    Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X.: Cytotoxicity of carbon nanomaterials: single-walled nanotube, multi-walled nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005)Google Scholar
  78. 78.
    Sayes, C.M., Gobin, A.M., Ausman, K.D., Mendez, J., West, J.L., Colvin, V.L.: Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26, 7587–7595 (2005)Google Scholar
  79. 79.
    Horie, M., Nishio, K., Kato, H., Shinohara, N., Nakamura, A., Fujita, K., Kinugasa, S., Endoh, S., Yamamoto, K., Yamamoto, O., Niki, E., Yoshida, Y., Iwahashi, H.: In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J. Biochem. 148, 289–298 (2010)Google Scholar
  80. 80.
    Li, L., Davande, H., Bedrov, D., Smith, G.D.: Comment on “on the accuracy of force fields for predicting the physical properties of dimethylnitramine”. J. Phys. Chem. B 111, 4067–4072 (2007)Google Scholar
  81. 81.
    Qiao, R., Roberts, A.P., Mount, A.S., Klaine, S.J., Ke, P.C.: Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007)Google Scholar
  82. 82.
    Bedrov, D., Smith, G.D., Davande, H., Li, L.: Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J. Phys. Chem. B 112, 2078–2084 (2008)Google Scholar
  83. 83.
    Wong-Ekkabut, J., Baoukina, S., Triampo, W., Tang, I.M., Tieleman, D.P., Monticelli, L.: Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 3, 363–368 (2008)Google Scholar
  84. 84.
    D’Rozario, R.S.G., Wee, C.L., Wallace, E.J., Sansom, M.S.P.: The interaction of C60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnology 20, 115102–115108 (2009)Google Scholar
  85. 85.
    DeVane, R., Jusufi, A., Shinoda, W., Chiu, C.C., Nielsen, S.O., Moore, P.B., Klein, M.L.: Parametrization and application of a coarse grained force field for benzene/fullerene interactions with lipids. J. Phys. Chem. B 114, 16364–16372 (2010)Google Scholar
  86. 86.
    Ikeda, A., Kiguchi, K., Shigematsu, T., Nobusawa, K., Kikuchi, J., Akiyama, M.: Location of [60]fullerene incorporation in lipid membranes. Chem. Commun. 47, 12095–12097 (2011)Google Scholar
  87. 87.
    Liu, J., Alvarez, J., Ong, W., Kaifer, A.E.: Network aggregates formed by C60 and gold nanoparticles capped with γ-cyclodextrin hosts. Nano Lett. 1, 57–60 (2001)Google Scholar
  88. 88.
    Hatano, T., Ikeda, A., Akiyama, T., Yamada, S., Sano, M., Kanekiyo, Y., Shinkai, S.: Facile construction of an ultra-thin [60]fullerene layer from [60]fullerene-homooxacalix[3]arene complexes on a gold surface. J. Chem. Soc., Perkin Trans. 2 29, 909–912 (2000)Google Scholar
  89. 89.
    Ikeda, A., Hatano, T., Shinkai, S., Akiyama, T., Yamada, S.: Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. J. Am. Chem. Soc. 123, 4855–4856 (2001)Google Scholar
  90. 90.
    Imahori, H., Norieda, H., Yamada, H., Nishimura, Y., Yamazaki, I., Sakata, Y., Fukuzumi, S.: Light-harvesting and photocurrent generation by cold electrodes modified with mixed self-assembled monolayers of boron-dipyrrin and ferrocene-porphyrin-fullerene triad. J. Am. Chem. Soc. 123, 100–110 (2001)Google Scholar
  91. 91.
    Imahori, H., Yamada, H., Nishimura, Y., Yamazaki, I., Sakata, Y.: Vectorial multistep electron transfer at the gold electrodes modified with self-assembled monolayers of ferrocene-porphyrin-fullerene triads. J. Phys. Chem. B 104, 2099–2108 (2000)Google Scholar
  92. 92.
    Hatano, T., Takeuchi, M., Ikeda, A., Shinkai, S.: Facile deposition of [60]fullerene on the electrode by electrochemical oxidative polymerization of thiophene. Chem. Commun. 39, 342–343 (2003)Google Scholar
  93. 93.
    Hatano, T., Bae, A.H., Sugiyasu, K., Fujita, N., Takeuchi, M., Ikeda, A., Shinkai, S.: Facile deposition of [60]fullerene and carbon nanotubes on ITO electrode by electrochemical oxidative polymerization of ethylenedioxythiophene. Org. Biomol. Chem. 1, 2343–2347 (2003)Google Scholar
  94. 94.
    Nakanishi, I., Fukuzumi, S., Konishi, T., Ohkubo, K., Fujitsuka, M., Ito, O., Miyata, N.: DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to γ-cyclodextrin-bicapped C60 in an oxygen-saturated aqueous solution. J. Phys. Chem. B 106, 2372–2380 (2002)Google Scholar
  95. 95.
    Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., Masumizu, T., Nagano, T.: Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2·− versus 1O2. J. Am. Chem. Soc. 125, 12803–12809 (2003)Google Scholar
  96. 96.
    Bernstein, R., Prat, F., Foote, C.S.: On the mechanism of DNA cleavage by fullerenes investigated in model systems: electron transfer from guanosine and 8-oxo-guanosine derivatives to C60. J. Am. Chem. Soc. 121, 464–465 (1999)Google Scholar
  97. 97.
    Yamakoshi, Y., Sueyoshi, S., Fukuhara, K., Miyata, N., Masumizu, T., Kohno, M.: ·OH and O2·− generation in aqueous C60 and C70 solutions by photoirradiation: an EPR study. J. Am. Chem. Soc. 120, 12363–12364 (1998)Google Scholar
  98. 98.
    Ikeda, A., Ejima, A., Nishiguchi, K., Shinkai, S., Goto, M.: DNA-photo-cleaving activities of water-soluble carbohydrate-containing nonionic homooxacalix[3]arene·[60]fullerene complex. Chem. Lett. 34, 308–309 (2005)Google Scholar
  99. 99.
    Krusic, P.J., Wasserman, E., Keizer, P.N., Morton, J.R., Preston, K.F.: Radical reactions of C60. Science 254, 1183–1185 (1991)Google Scholar
  100. 100.
    Xiao, L., Takada, H., Maeda, K., Haramoto, M., Miwa, N.: Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 59, 351–358 (2005)Google Scholar
  101. 101.
    Kato, S., Aoshima, H., Saitoh, Y., Miwa, N.: Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg. Med. Chem. Lett. 19, 5293–5296 (2009)Google Scholar
  102. 102.
    Kato, S., Kikuchi, R., Aoshima, H., Saitoh, Y., Miwa, N.: Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60. J. Photochem. Photobiol. B 98, 144–151 (2010)Google Scholar
  103. 103.
    Kato, S., Aoshima, H., Saitoh, Y., Miwa, N.: Fullerene-C60 incorporated in liposome exerts persistent hydroxyl radical-scavenging activity and cytoprotection in UVA/B-irradiated keratinocytes. J. Nanosci. Nanotechnol. 11, 3814–3823 (2011)Google Scholar
  104. 104.
    Ikeda, A., Akiyama, M., Ogawa, T., Takeya, T.: Photodynamic activity of liposomal photosensitizers via energy transfer from antenna molecules to [60]fullerene. ACS Med. Chem. Lett. 1, 115–119 (2010)Google Scholar
  105. 105.
    Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., Peng, Q.: Photodynamic therapy. J. Natl. Cancer Inst. 90, 889–905 (1998)Google Scholar
  106. 106.
    Kato, H.: Photodynamic therapy for lung cancer: a review of 19 years experience. J. Photochem. Photobiol. B 42, 96–99 (1998)Google Scholar
  107. 107.
    Ikeda, A., Doi, Y., Nishiguchi, K., Kitamura, K., Hashizume, M., Kikuchi, J., Yogo, K., Ogawa, T., Takeya, T.: Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene. Org. Biomol. Chem. 5, 1158–1160 (2007)Google Scholar
  108. 108.
    Tabata, Y., Ikada, Y.: Biological functions of fullerene. Pure Appl. Chem. 71, 2047–2053 (1999)Google Scholar
  109. 109.
    Guldi, D.M., Prato, M.: Excited-State Properties of C60 fullerene derivatives. Acc. Chem. Res. 33, 695–703 (2000)Google Scholar
  110. 110.
    Hamano, T., Okuda, K., Mashino, T., Hirobe, M., Arakane, K., Ryu, A., Mashiko, S., Nagano, T.: Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Chem. Commun. 33, 21–22 (1997)Google Scholar
  111. 111.
    Ikeda, A., Matsumoto, M., Akiyama, M., Kikuchi, J., Ogawa, T., Takeya, T.: Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-γ-cyclodextrin complex and the resulting photodynamic activity. Chem. Commun. 45, 1547–1549 (2009)Google Scholar
  112. 112.
    Sakai, A., Yamakoshi, Y.N., Miyata, N.: The effects of fullerenes on the initiation and promotion stages of BALB/3T3 cell transformation. Fullerene Sci. Technol. 3, 377–388 (1995)Google Scholar
  113. 113.
    Sakai, A., Yamakoshi, Y., Miyata, N.: Visible light irradiation of [60]fullerene causes killing and initiation of transformation in BALB/3T3 cells. Fuller. Sci. Technol. 7, 743–756 (1999)Google Scholar
  114. 114.
    Ikeda, A., Doi, Y., Akiyama, M., Nagano, M., Shigematsu, T., Ogawa, T., Takeya, T., Nagasaki, T.: Intracellular uptake and photodynamic activity of water-soluble [60]- and [70]fullerenes incorporated in liposomes. Chem. Eur. J. 14, 8892–8897 (2008)Google Scholar
  115. 115.
    Boyle, R., Dolphin, D.: Structure and biodistribution relationships of photodynamic sensitizers. Photochem. Photobiol. 64, 469–485 (1996)Google Scholar
  116. 116.
    Takagi, S., Eguchi, M., Tryk, D.A., Inoue, H.: Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol. C 7, 104–126 (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Materials ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations