Urea derivatives as low-molecular-weight gelators

  • Masamichi YamanakaEmail author
Review Article


This paper reports an overview of low-molecular-weight gelators (LMWGs) that have a ureide moiety as a hydrogen-bonding site. Various mono-, bis-, tris-, and tetrakis-urea compounds can form supramolecular gels with organic solvents. The author developed a C 3-symmetrical tris-urea molecule that can form a ubiquitous framework of LMWGs. The supramolecular organogel of the tris-urea molecule exhibited a chemical-stimuli-responsive reversible gel–sol phase transition. Supramolecular hydrogels are constructed from self-assemblies of amphiphilic urea derivatives. Sugar-connected amphiphilic tris-urea was found to form a gel with water, and the hydrogels showed chemical-stimuli-responsive gel–sol phase transitions. The potential of supramolecular hydrogels as matrices of electrophoresis has been demonstrated through the supramolecular gel electrophoresis (SUGE) of protein samples using our developed amphiphilic tris-urea LMWG.


Gel Hydrogen bond Molecular recognition Self-assembly Urea 



The author thanks the organizing committee of Association of Research for Host–Guest and Supramolecular Chemistry (Japan) for giving him “HGCS Japan Award of Excellence 2012” and the opportunity of writing this review. This work was supported by Grant-in-aid for the Scientific Research on the Innovative Areas: “Fusion Materials” (Area No. 2206, No. 23107514) and Grant-in-Aid for the Scientific Research (B) (No. 24310089) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), A-STEP (Exploratory Research) from Japan Science and Technology Agency (JST), Tokuyama Science Foundation, Kurata Grant, Daicel Chemical Industry Award in Synthetic Organic Chemistry, Japan, and Nissan Chemical Industry, LTD. The author thanks Prof. Kenji Kobayashi (Shizuoka University) for his valuable suggestions and discussions, Prof. Hideyuki Itagaki (Shizuoka University) for SEM measurements, Prof. Keiko Kashiwagi, Dr. Hideyuki Tomitori (Chiba Institute of Science), and Dr. Takanori Oyoshi (Shizuoka University) for electrophoresis research, and all the group members.


  1. 1.
    Tokita, M., Nishinari, K.: Gels: Structures, Properties, and Functions. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P.: Supramolecular polymers. Chem. Rev. 101, 4071–4097 (2001). doi: 10.1021/cr990125q CrossRefGoogle Scholar
  3. 3.
    De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P., Meijer, E.W.: Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009). doi: 10.1021/cr900181u CrossRefGoogle Scholar
  4. 4.
    Terech, P., Weiss, R.G.: Low molecular mass gelators of organic liquids and properties of their gels. Chem. Rev. 97, 3133–3159 (1997). doi: 10.1021/cr9700282 CrossRefGoogle Scholar
  5. 5.
    van Esch, J.H., Feringa, B.L.: New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000). doi: 10.1002/1521-3773(20000703)39:13<2263:AID-ANIE2263>3.0.CO;2-V CrossRefGoogle Scholar
  6. 6.
    Abdallah, D.J., Weiss, R.G.: Organogels and low molecular mass organic gelators. Adv. Mater. 12, 1237–1247 (2000). doi: 10.1002/1521-4095(200009)12:17<1237:AID-ADMA1237>3.0.CO;2-B CrossRefGoogle Scholar
  7. 7.
    Gronwald, O., Shinkai, S.: Sugar-integrated gelators of organic solvents. Chem. Eur. J. 7, 4328–4334 (2001). doi: 10.1002/1521-3765(20011015)7:20<4328:AID-CHEM4328>3.0.CO;2-S CrossRefGoogle Scholar
  8. 8.
    Estroff, L.A., Hamilton, A.D.: Water gelation by small molecules. Chem. Rev. 104, 1201–1218 (2004). doi: 10.1021/cr0302049 CrossRefGoogle Scholar
  9. 9.
    Sangeetha, N.M., Maitra, U.: Supramolecular gels: function and uses. Chem. Soc. Rev. 34, 821–836 (2005). doi: 10.1039/B417081B CrossRefGoogle Scholar
  10. 10.
    de Loos, M., Feringa, B.L., van Esch, J.H.: Design and application of self-assembled low molecular weight hydrogels. Eur. J. Org. Chem. 3615–3631 (2005). doi: 10.1002/ejoc.200400723
  11. 11.
    George, M., Weiss, R.G.: Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res. 39, 489–497 (2006). doi: 10.1021/ar0500923 CrossRefGoogle Scholar
  12. 12.
    Piepenbrock, M.O.M., Lloyd, G.O., Clarke, N., Steed, J.W.: Metal- and anion-binding supramolecular gels. Chem. Rev. 110, 1960–2004 (2010). doi: 10.1021/cr9003067 CrossRefGoogle Scholar
  13. 13.
    Steed, J.W.: Supramolecular gel chemistry: developments over the last decade. Chem. Commun. 47, 1379–1383 (2011). doi: 10.1039/c0cc03293j CrossRefGoogle Scholar
  14. 14.
    John, G., Jadhav, S.R., Menon, V.M., John, V.T.: Flexible optics: recent developments in molecular gels. Angew. Chem. Int. Ed. 51, 1760–1762 (2012). doi: 10.1002/anie.201107167 CrossRefGoogle Scholar
  15. 15.
    Custelcean, R.: Crystal engineering with urea and thiourea hydrogen-bonding groups. Chem. Commun. 295–307 (2008). doi: 10.1039/b708921j
  16. 16.
    Chandran, S.K., Nath, N.K., Cherukuvada, S., Nangia, A.: N-H···N(pyridyl) and N–H···O(urea) hydrogen bonding and molecular conformation of N-aryl-N’-pyridylureas. J. Mol. Struct. 968, 99–107 (2010). doi: 10.1016/j.molstruc.2010.01.030 CrossRefGoogle Scholar
  17. 17.
    Rebek, J.Jr.: Host–guest chemistry of calixarene capsules. Chem. Commun. 637–643 (2000). doi: 10.1039/a910339m
  18. 18.
    Bogdan, A., Rudzevich, Y., Vysotsky, M.O., Böhmer, V.: Topologically novel multiple rotaxanes and catenanes based on tetraurea calix[4]arenes. Chem. Commun. 2941–2952 (2006). doi: 10.1039/B601699E
  19. 19.
    George, M., Tan, G., John, V.T., Weiss, R.G.: Urea and thiourea derivatives as low molecular-mass organogelators. Chem. Eur. J. 11, 3243–3254 (2005). doi: 10.1002/chem.200401066 CrossRefGoogle Scholar
  20. 20.
    Babu, P., Sangeetha, N.M., Vijaykumar, P., Maitra, U., Rissanen, K., Raju, A.R.: Pyrene-derived novel one- and two-component organogelators. Chem. Eur. J. 9, 1922–1932 (2003). doi: 10.1002/chem.200204459 CrossRefGoogle Scholar
  21. 21.
    Wang, C., Zhang, D., Zhu, D.: A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. J. Am. Chem. Soc. 127, 16372–16373 (2005). doi: 10.1021/ja055800u CrossRefGoogle Scholar
  22. 22.
    Wang, C., Zhang, D., Xiang, J., Zhu, D.: New organogels based on an anthracene derivative with one urea group and its photodimer: fluorescence enhancement after gelation. Langmuir 23, 9195–9200 (2007). doi: 10.1021/la701142d CrossRefGoogle Scholar
  23. 23.
    Potluri, V.K., Hamilton, A.D.: Isophthalic acid-derived organogelators. J. Supramol. Chem. 2, 321–326 (2002). doi: 10.1016/S1472-7862(03)00088-1 CrossRefGoogle Scholar
  24. 24.
    Kubo, K., Mori, A.: Synthesis and gelation properties of N,N′-bis(3,4,5-tridodecyloxy)benzoylurea: terpene and perfume gels. Chem. Lett. 34, 1250–1251 (2005). doi: 10.1246/cl.2005.1250 CrossRefGoogle Scholar
  25. 25.
    Pal, A., Dey, J.: Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-l-alanine amphiphiles. Langumuir 27, 3401–3408 (2011). doi: 10.1021/la105027b CrossRefGoogle Scholar
  26. 26.
    Tsuge, A., Matsushita, R., Sakura, K., Moriguchi, T., Araki, K.: Organogelators derived from [3.3]metacyclophane skelton with a urea unit. Chem. Lett. 41, 485–487 (2012). doi: 10.1246/cl.2012.485 CrossRefGoogle Scholar
  27. 27.
    Arai, S., Imazu, K., Kusuda, S., Yoshihama, I., Tonegawa, M., Nishimura, Y., Kitahara, K., Oishi, S., Takemura, T.: Organogel formation by self-assembly of Ag(I) and mono-urea derivatives containing pyridyl group. Chem. Lett. 35, 634–635 (2006). doi: 10.1246/cl.2006.634 CrossRefGoogle Scholar
  28. 28.
    Hsueh, S.-Y., Kuo, C.-T., Lu, T.-W., Lai, C.-C., Liu, Y.-H., Hsu, H.-F., Peng, S.-M., Chen, C.-H., Chiu, S.-H.: Acid/base- and anion-controllable organogels formed from a urea-based molecular switch. Angew. Chem. Int. Ed. 49, 9170–9173 (2010). doi: 10.1002/anie.201004090
  29. 29.
    Hanabusa, K., Yamada, M., Kimura, M., Shirai, H.: Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angew. Chem. Int. Ed. Engl. 35, 1949–1951 (1996). doi: 10.1002/anie.199619491 CrossRefGoogle Scholar
  30. 30.
    Hanabusa, K., Shimura, K., Hirose, K., Kimura, M., Shirai, H.: Formation of organogels by intermolecular hydrogen bonding between ureylene segment. Chem. Lett. 25, 885–886 (1996). doi: 10.1246/cl.1996.885 CrossRefGoogle Scholar
  31. 31.
    de Loos, M., van Esch, J., Stokroos, I., Kellogg, R.M., Feringa, B.L.: Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc. 119, 12675–12676 (1997). doi: 10.1021/ja972899z CrossRefGoogle Scholar
  32. 32.
    van Esch, J., Schoonbeek, F., de Loos, M., Kooijman, H., Spek, A.L., Kellogg, R.M., Feringa, B.L.: Cyclic bis-urea compounds as gelators for organic solvents. Chem. Eur. J. 5, 937–950 (1999). doi: 10.1002/(SICI)1521-3765(19990301)5:3<937:AID-CHEM937>3.0.CO;2-0 CrossRefGoogle Scholar
  33. 33.
    Brinksma, J., Feringa, B.L., Kellogg, R.M., Vreeker, R., van Esch, J.: Rheology and thermotropic properties of bis-urea-based organogels in various primary alcohols. Langmuir 16, 9249–9255 (2000). doi: 10.1021/la000839s CrossRefGoogle Scholar
  34. 34.
    Jung, J.H., Ono, Y., Shinkai, S.: Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: creation of both right- and left-handed silica structures by helical organogel fibers. Chem. Eur. J. 6, 4552–4557 (2000). doi: 10.1002/1521-3765(20001215)6:24<4552:AID-CHEM4552>3.0.CO;2-5 CrossRefGoogle Scholar
  35. 35.
    Moreau, J.J.E., Vellutini, L., Man, M.W.C., Bied, C.: New hybrid hrganic-inorganic solids with helical morphology via H-bond mediated sol–gel hydrolysis of silyl derivatives of chiral (R, R)- or (S, S)-Diureidocyclohexane. J. Am. Chem. Soc. 123, 1509–1510 (2001). doi: 10.1021/ja003843z CrossRefGoogle Scholar
  36. 36.
    de Loos, M., van Esch, J., Kellogg, R.M., Feringa, B.L.: Chiral recognition in bis-urea-based aggregates and organogels through cooperative interactions. Angew. Chem. Int. Ed. 40, 613–616 (2001). doi: 10.1002/1521-3773(20010202)40:3<613:AID-ANIE613>3.0.CO;2-K CrossRefGoogle Scholar
  37. 37.
    Jeong, Y., Hanabusa, K., Masunaga, H., Akiba, I., Miyoshi, K., Sakurai, S., Sakurai, K.: Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels. Langmuir 21, 586–594 (2005). doi: 10.1021/la047538t CrossRefGoogle Scholar
  38. 38.
    van der Laan, S., Feringa, B.L., Kellogg, R.M., van Esch, J.: Remarkable polymorphism in gels of new azobenzene bis-urea gelators. Langmuir 18, 7136–7140 (2002). doi: 10.1021/la025561d CrossRefGoogle Scholar
  39. 39.
    Yabuuchi, K., Emmanuel, M.-O., Kato, T.: A new urea gelator: incorporation of intra- and intermolecular hydrogen bonding for stable 1D self-assembly. Org. Biomol. Chem. 1, 3464–3469 (2003). doi: 10.1039/B307149A CrossRefGoogle Scholar
  40. 40.
    Simic, V., Bouteiller, L., Jalabert, M.: Highly cooperative formation of bis-urea based supramolecular polymers. J. Am. Chem. Soc. 125, 13148–13154 (2003). doi: 10.1021/ja037589x CrossRefGoogle Scholar
  41. 41.
    Mohmeyer, N., Schmidt, H.W.: A new class of low-molecular-weight amphiphilic gelators. Chem. Eur. J. 11, 863–872 (2005). doi: 10.1002/chem.200400716 CrossRefGoogle Scholar
  42. 42.
    Yang, H., Yi, T., Zhou, Z., Zhou, Y., Wu, J., Xu, M., Li, F., Huang, C.: Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224–8230 (2007). doi: 10.1021/la7005919 CrossRefGoogle Scholar
  43. 43.
    Kim, T.H., Choi, M.S., Sohn, B.H., Park, S.Y., Lyoo, W.S., Lee, T.S.: Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chem. Commun. 2364–2366 (2008). doi: 10.1039/B800813B
  44. 44.
    Akazawa, M., Uchida, K., de Jong, J.J.D., Areephong, J., Stuart, M., Caroli, G., Browne, W.R., Feringa, B.L.: Photoresponsive dithienylethene-urea-based organogels with “reversed” behavior. Org. Biomol. Chem. 6, 1544–1547 (2008). doi: 10.1039/B802580K CrossRefGoogle Scholar
  45. 45.
    Ouhib, F., Raynal, M., Jouvelet, B., Isare, B., Bouteiller, L.: Hydrogen bonded supramolecular polymers in moderately polar solvents. Chem. Commun. 47, 10683–10685 (2011). doi: 10.1039/C1CC14590H CrossRefGoogle Scholar
  46. 46.
    Piepenbrock, M.O.M., Clarke, N., Steed, J.W.: Rheology and silver nanoparticle templating in a bis(urea) silver metallogel. Soft Matter 7, 2412–2418 (2011). doi: 10.1039/C0SM00647E CrossRefGoogle Scholar
  47. 47.
    van Esch, J., Kellogg, R.M., Feringa, B.L.: Di-urea compounds as gelators for organic solvents. Tetrahedron Lett. 38, 281–284 (1997). doi: 10.1016/S0040-4039(96)02292-7 CrossRefGoogle Scholar
  48. 48.
    van Esch, J., Feyter, S.D., Kellogg, R.M., Schryver, F.D., Feringa, B.L.: Self-assembly of bisurea compounds in organic solvents and on solid substrates. Chem. Eur. J. 3, 1238–1243 (1997). doi: 10.1002/chem.19970030811 CrossRefGoogle Scholar
  49. 49.
    Wang, G., Hamilton, A.D.: Synthesis and self-assembling properties of polymerizable organogelators. Chem. Eur. J. 8, 1954–1961 (2002). doi: 10.1002/1521-3765(20020415)8:8<1954:AID-CHEM1954>3.0.CO;2-X CrossRefGoogle Scholar
  50. 50.
    Hardy, J.G., Hirst, A.R., Ashworth, I., Brennan, C., Smith, D.K.: Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron 63, 7397–7406 (2007). doi: 10.1016/j.tet.2007.03.120 CrossRefGoogle Scholar
  51. 51.
    Coates, I.A., Smith, D.K.: Controlled self-assembly-synthetic tunability and covalent capture of nanoscale gel morphologies. Chem. Eur. J. 15, 6340–6344 (2009). doi: 10.1002/chem.200900858 CrossRefGoogle Scholar
  52. 52.
    Edwards, W., Lagadec, C.A., Smith, D.K.: Solvent–gelator interactions–using empirical solvent parameters to better understand the self-assembly of gel-phase materials. Soft Matter 7, 110–117 (2011). doi: 10.1039/C0SM00843E CrossRefGoogle Scholar
  53. 53.
    Piepenbrock, M.O.M., Lloyd, G.O., Clarke, N., Steed, J.W.: Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem. Commun. 2644–2646 (2008). doi: 10.1039/B804259D
  54. 54.
    Lloyd, G.O., Piepenbrock, M.O.M., Foster, J.A., Clarke, N., Steed, J.W.: Anion tuning of chiral bis(urea) low molecular weight gels. Soft Matter 8, 204–216 (2012). doi: 10.1039/C1SM06448G CrossRefGoogle Scholar
  55. 55.
    Byrne, P., Lloyd, G.O., Applegarth, L., Anderson, K.M., Clarke, N., Steed, J.W.: Metal-induced gelation in dipyridyl ureas. New J. Chem. 34, 2261–2274 (2010). doi: 10.1039/C0NJ00278J CrossRefGoogle Scholar
  56. 56.
    Carr, A.J., Melendez, R., Geib, S.J., Hamilton, A.D.: The design of organic gelators: solution and solid state properties of a family of bis-ureas. Tetrahedron Lett. 39, 7447–7450 (1998). doi: 10.1016/S0040-4039(98)01667-0 CrossRefGoogle Scholar
  57. 57.
    Baddeley, C., Yan, Z., King, G., Woodward, P.M., Badjić, J.D.: Structure-function studies of modular aromatics that form molecular organogels. J. Org. Chem. 72, 7270–7278 (2007). doi: 10.1021/jo071159y CrossRefGoogle Scholar
  58. 58.
    Piepenbrock, M.O.M., Clarke, N., Steed, J.W.: Metal ion and anion-based “tuning” of a supramolecular metallogel. Langmuir 25, 8451–8456 (2009). doi: 10.1021/la900145n CrossRefGoogle Scholar
  59. 59.
    Foster, J.A., Piepenbrock, M.O.M., Lloyd, G.O., Clarke, N., Howard, J.A.K., Steed, J.W.: Corresponding author anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nature Chem. 2, 1037–1043 (2010). doi: 10.1038/nchem.859 CrossRefGoogle Scholar
  60. 60.
    Piepenbrock, M.O.M., Clarke, N., Steed, J.W.: Shear induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli. Soft Matter 6, 3541–3547 (2010). doi: 10.1039/C0SM00313A CrossRefGoogle Scholar
  61. 61.
    Piepenbrock, M.O.M., Clarke, N., Foster, J.A., Steed, J.W.: Anion tuning and polymer templating in a simple low molecular weight organogelator. Chem. Commun. 47, 2095–2097 (2011). doi: 10.1039/C0CC03439H CrossRefGoogle Scholar
  62. 62.
    Qi, Z., de Molina, P.M., Jiang, W., Wang, Q., Nowosinski, K., Schulz, A., Gradzielski, M., Schalley, C.A.: Systems chemistry: logic gates based on the stimuli-responsive gel–sol transition of a crown ether-functionalized bis(urea) gelator. Chem. Science 3, 2073–2082 (2012). doi: 10.1039/C2SC01018F CrossRefGoogle Scholar
  63. 63.
    Komatsu, H., Matsumoto, S., Tamaru, S., Kaneko, K., Ikeda, M., Hamachi, I.: Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J. Am. Chem. Soc. 131, 5580–5585 (2009). doi: 10.1021/ja8098239 CrossRefGoogle Scholar
  64. 64.
    Shi, C., Huang, Z., Kilic, S., Xu, J., Enick, R.M., Beckman, E.J., Carr, A.J., Melendez, R.E., Hamilton, A.D.: The gelation of CO2: a sustainable route to the creation of microcellular materials. Science 286, 1540–1543 (1999). doi: 10.1126/science.286.5444.1540 CrossRefGoogle Scholar
  65. 65.
    Schoonbeek, F.S., van Esch, J.H., Wegewijs, B., Rep, D.B.A., de Haas, M.P., Klapwijk, T.M., Kellogg, R.M., Feringa, B.L.: Efficient intermolecular charge transport in self-assembled fibers of mono- and bithiophene bisurea compounds. Angew. Chem. Int. Ed. 38, 1393–1397 (1999). doi: 10.1002/(SICI)1521-3773(19990517)38:10<1393:AID-ANIE1393>3.0.CO;2-H CrossRefGoogle Scholar
  66. 66.
    Schoonbeek, F.S., van Esch, J.H., Hulst, R., Kellogg, R.M., Feringa, B.L.: Geminal bis-ureas as gelators for organic solvents: gelation properties and structural studies in solution and in the gel state. Chem. Eur. J. 6, 2633–2643 (2000). doi: 10.1002/1521-3765(20000717)6:14<2633:AID-CHEM2633>3.0.CO;2-L CrossRefGoogle Scholar
  67. 67.
    Würthner, F., Hanke, B., Lysetska, M., Lambright, G., Harms, G.S.: Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. Org. Lett. 7, 967–970 (2005). doi: 10.1021/ol0475820 CrossRefGoogle Scholar
  68. 68.
    Miravet, J.F., Escuder, B.: Reactive organogels: self-assembled support for functional materials. Org. Lett. 7, 4791–4794 (2005). doi: 10.1021/ol0514045 CrossRefGoogle Scholar
  69. 69.
    Wang, C., Zhang, D., Zhu, D.: A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: modulation of the CD spectrum after gel formation. Langmuir 23, 1478–1482 (2007). doi: 10.1021/la062621x CrossRefGoogle Scholar
  70. 70.
    Dou, C., Wang, C., Zhang, H., Gao, H., Wang, Y.: Novel urea-functionalized quinacridone derivatives: ultrasound and thermo effects on supramolecular organogels. Chem. Eur. J. 16, 10744–10751 (2010). doi: 10.1002/chem.200903575 CrossRefGoogle Scholar
  71. 71.
    Das, A., Ghosh, S.: Contrasting self-assembly and gelation properties among bis-urea- and bis-amide-functionalised dialkoxynaphthalene (DAN) π systems. Chem. Eur. J. 16, 13622–13628 (2010). doi: 10.1002/chem.201002208 CrossRefGoogle Scholar
  72. 72.
    de Loos, M., Ligtenbarg, A.G.J., van Esch, J., Kooijman, H., Spek, A.L., Hage, R., Kellogg, R.M., Feringa, B.L.: Tripodal tris-urea derivatives as gelators for organic solvents. Eur. J. Org. Chem. 3675–3678 (2000). doi: 10.1002/1099-0690(200011)2000:22<3675::AID-EJOC3675>3.0.CO;2-K
  73. 73.
    Zhou, Y., Yi, T., Li, T., Zhou, Z., Li, F., Huang, W., Huang, C.: Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions. Chem. Mater. 18, 2974–2981 (2006). doi: 10.1021/cm052805h CrossRefGoogle Scholar
  74. 74.
    Stanley, C.E., Clarke, N., Anderson, K.M., Elder, J.A., Lenthall, J.T., Steed, J.W.: Anion binding inhibition of the formation of a helical organogel. Chem. Commun. 3199–3201 (2006). doi: 10.1039/B606373J
  75. 75.
    van Gorp, J.J., Vekemans, J.A.J.M., Meijer, E.W.: C3-Symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. J. Am. Chem. Soc. 124, 14759–14769 (2002). doi: 10.1021/ja020984n CrossRefGoogle Scholar
  76. 76.
    de Loos, M., van Esch, J.H., Kellogg, R.M., Feringa, B.L.: C 3-Symmetric, amino acid based organogelators and thickeners: a systematic study of structure–property relations. Tetrahedron 63, 7285–7301 (2007). doi: 10.1016/j.tet.2007.02.066 CrossRefGoogle Scholar
  77. 77.
    Tamaru, S., Uchino, S., Takeuchi, M., Ikeda, M., Hatano, T., Shinkai, S.: A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. Tetrahedron Lett. 43, 3751–3755 (2002). doi: 10.1016/S0040-4039(02)00541-5 CrossRefGoogle Scholar
  78. 78.
    Kishida, T., Fujita, N., Sada, K., Shinkai, S.: Porphyrin gels reinforced by sol–gel reaction via the organogel phase. Langmuir 21, 9432–9439 (2005). doi: 10.1021/la0515569 CrossRefGoogle Scholar
  79. 79.
    Kishida, T., Fujita, N., Hirata, O., Shinkai, S.: Axial coordination changes the morphology of porphyrin assemblies in an organogel system. Org. Biomol. Chem. 4, 1902–1909 (2006). doi: 10.1039/B602025A CrossRefGoogle Scholar
  80. 80.
    Yamanaka, M., Toyoda, N., Kobayashi, K.: Hybrid cavitand capsule with hydrogen bonds and metal-ligand coordination bonds: guest encapsulation with anion assistance. J. Am. Chem. Soc. 131, 9880–9881 (2009). doi: 10.1021/ja903253c CrossRefGoogle Scholar
  81. 81.
    Yamanaka, M., Kawaharada, M., Nito, Y., Takaya, H., Kobayashi, K.: Structural alteration of hybrid supramolecular capsule induced by guest encapsulation. J. Am. Chem. Soc. 133, 16650–16656 (2011). doi: 10.1021/ja207092c CrossRefGoogle Scholar
  82. 82.
    Yamanaka, M., Nakamura, T., Nakagawa, T., Itagaki, H.: Reversible sol–gel transition of a tris-urea gelator that responds to chemical stimuli. Tetrahedron Lett. 48, 8990–8993 (2007). doi: 10.1016/j.tetlet.2007.10.090 CrossRefGoogle Scholar
  83. 83.
    Antonisse, M.M.G., Reinhoudt, D.N.: Neutral anion receptors: design and application. Chem. Commun. 443–448 (1998). doi: 10.1039/A707529D
  84. 84.
    Wenzel, M., Hiscock, J.R., Gale, P.A.: Anion receptor chemistry: highlights from 2010. Chem. Soc. Rev. 41, 480–520 (2012). doi: 10.1039/c1cs15257b CrossRefGoogle Scholar
  85. 85.
    Aoyama, R., Amakatsu, M., Yamanaka, M.: Metal salt-induced regelation of acetone solutions of tris-urea low-molecular weight gelator and anions. Supramol. Chem. 23, 140–143 (2011). doi: 10.1080/10610278.2010.514912 CrossRefGoogle Scholar
  86. 86.
    Yamanaka, M., Nakagawa, T., Aoyama, R., Nakamura, T.: Synthesis and estimation of gelation ability of C 3-symmetry tris-urea compounds. Tetrahedron 64, 11558–11567 (2008). doi: 10.1016/j.tet.2008.10.036 CrossRefGoogle Scholar
  87. 87.
    Yamanaka, M., Fujii, H.: Chloroalkane gel formations by tris-urea low molecular weight gelator under various conditions. J. Org. Chem. 74, 5390–5394 (2009). doi: 10.1021/jo900894q CrossRefGoogle Scholar
  88. 88.
    Yamanaka, M., Aoyama, R.: Construction of two- or three-component low molecular weight gel systems. Bul. Chem. Soc. Jpn. 83, 1127–1131 (2010). doi: 10.1246/bcsj.20100136 CrossRefGoogle Scholar
  89. 89.
    Yang, Z., Liang, G., Xu, B.: Enzymatic hydrogelation of small molecules. Acc. Chem. Res. 41, 315–326 (2008). doi: 10.1021/ar7001914 CrossRefGoogle Scholar
  90. 90.
    Hirst, A.R., Escuder, B., Miravet, J.F., Smith, D.K.: High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008). doi: 10.1002/anie.200800022 CrossRefGoogle Scholar
  91. 91.
    Cui, H., Webber, M.J., Stupp, S.I.: Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010). doi: 10.1002/bip.21328 CrossRefGoogle Scholar
  92. 92.
    Ikeda, M., Ochi, R., Hamachi, I.: Supramolecular hydrogel-based protein and chemosensor array. Lab Chip 10, 3325–3334 (2010). doi: 10.1039/C004908E CrossRefGoogle Scholar
  93. 93.
    Estroff, L.A., Hamilton, A.D.: Effective gelation of water using a series of bis-urea dicarboxylic acids. Angew. Chem. Int. Ed. 39, 3447–3450 (2000). doi: 10.1002/1521-3773(20001002)39:19<3447:AID-ANIE3447>3.0.CO;2-X CrossRefGoogle Scholar
  94. 94.
    Estroff, L.A., Leiserowitz, L., Addadi, L., Weiner, S., Hamilton, A.D.: Characterization of an organic hydrogel: a cryo-transmission electron microscopy and X-ray diffraction study. Adv. Mater. 15, 38–42 (2003). doi: 10.1002/adma.200390004 CrossRefGoogle Scholar
  95. 95.
    Wang, G., Hamilton, A.D.: Low molecular weight organogelators for water. Chem. Commun. 310–311 (2003). doi: 10.1039/B205733F
  96. 96.
    de Loos, M., Friggeri, A., van Esch, J., Kellogg, R.M., Feringa, B.L.: Cyclohexane bis-urea compounds for the gelation of water and aqueous solutions. Org. Biomol. Chem. 3, 1631–1639 (2005). doi: 10.1039/B500837A CrossRefGoogle Scholar
  97. 97.
    Kumar, D.K., Jose, D.A., Das, A., Dastidar, P.: First snapshot of a nonpolymeric hydrogelator interacting with its gelling solvents. Chem. Commun. 4059–4061 (2005). doi: 10.1039/B506941F
  98. 98.
    Adarsh, N.N., Kumar, D.K., Dastidar, P.: Composites of N, N′-bis-(pyridyl) urea-dicarboxylic acid as new hydrogelators—a crystal engineering approach Original Research Article. Tetrahedron 63, 7386–7396 (2007). doi: 10.1016/j.tet.2007.02.005 CrossRefGoogle Scholar
  99. 99.
    Vemula, P.K., John, G.: Smart amphiphiles: hydro/organogelators for in situ reduction of gold. Chem. Commun. 2218–2220 (2006). doi: 10.1039/B518289A
  100. 100.
    Ávalos, M., Babiano, R., Cintas, P., Dipl, A.G.C., Jiménez, J.L., Dipl, M.L., Ortiz, A.L., Palacios, J.C., Pinazo, A.: A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization. Chem. Eur. J. 14, 5656–5669 (2008). doi: 10.1002/chem.200701897 CrossRefGoogle Scholar
  101. 101.
    Goyal, N., Cheuk, S., Wang, G.: Synthesis and characterization of d-glucosamine-derived low molecular weight gelators. Tetrahedron 66, 5962–5971 (2010). doi: 10.1016/j.tet.2010.05.071 CrossRefGoogle Scholar
  102. 102.
    Lloyd, G.O., Steed, J.W.: Anion tuning of the rheology, morphology and gelation of a low molecular weight salt hydrogelator. Soft Matter 7, 75–84 (2011). doi: 10.1039/C0SM00594K CrossRefGoogle Scholar
  103. 103.
    Yamanaka, M., Haraya, N., Yamamichi, S.: Chemical stimuli-responsive supramolecular hydrogel from amphiphilic tris-urea. Chem. Asian J. 6, 1022–1025 (2011). doi: 10.1002/asia.201000791 CrossRefGoogle Scholar
  104. 104.
    Jinno, Y., Yamanaka, M.: Ionic surfactants induce amphiphilic tris(urea) hydrogel formation. Chem. Asian J. 7, 1768–1771 (2012). doi: 10.1002/asia.201200152 CrossRefGoogle Scholar
  105. 105.
    Righetti, P.G.: Electrophoresis: the March of pennies, the March of dimes. J. Chromatogr., A 1079, 24–40 (2005). doi: 10.1016/j.chroma.2005.01.018
  106. 106.
    Klepárník, K., Boček, P.: Electrophoresis today and tomorrow: helping biologists’ dreams come true. BioEssays 32, 218–226 (2010). doi: 10.1002/bies.200900152 CrossRefGoogle Scholar
  107. 107.
    Raymond, S., Weintraub, L.: Acrylamide gel as a supporting medium for zone electrophoresis. Science 130, 711 (1959). doi: 10.1126/science.130.3377.711 CrossRefGoogle Scholar
  108. 108.
    Laemmli, U.K.: Cleavage of structural proteins during the sssembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). doi: 10.1038/227680a0 CrossRefGoogle Scholar
  109. 109.
    Seelert, H., Krause, F.: Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis 29, 2617–2636 (2008). doi: 10.1002/elps.200800061 CrossRefGoogle Scholar
  110. 110.
    Yamamichi, S., Jinno, Y., Haraya, N., Oyoshi, T., Tomitori, H., Kashiwagi, K., Yamanaka, M.: Separation of proteins using supramolecular gel electrophoresis. Chem. Commun. 47, 10344–10346 (2011). doi: 10.1039/C1CC13826J CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Science, Shizuoka UniversitySuruga-kuJapan

Personalised recommendations