Skip to main content
Log in

Analytical applications of nano-baskets of calix[4]pyrroles

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Calix[4]pyrrole is one such class which holds a great promise in the fields of sensors and their unique behavior as sensors owes to its structural flexibility. Anion binding ability of calix[4]pyrrole has been modified in a variety of ways. Introduction of electron releasing and electron withdrawing groups at the meso position or at β-pyrrolic positions leads to calix[4]pyrrole with deep cavities and fixed walls which shows increased selectivity and modified binding effects. Strapping of calix[4]pyrrole is another way to modify its structural behavior which is responsible for its binding behavior. Choice of strap could play a profound role not only in increasing the intrinsic anion binding affinity of calix[4] pyrrole, but also in modulating the receptor anion stoichiometry, thereby modifying potentially the inherent anion binding selectivity. Calix[n]pyrroles with extended cavities have also been synthesized. Such as calix[3]bipyrrole binds bromide substantially with high affinity than calix[4]pyrrole. Calix[4]pyrrole has also been used to produce anion sensors that can report the presence of anion by means of a color change. The medium effect on the complexation of calix[4]pyrrole and anion has been investigated in various solvents. Calix[4]pyrrole has also been used to increase the ionic conductivity of solid polymer electrolyte by anion complexation of the metal salt. Calix[4]pyrrole has been used to obtain optical sensors using surface plasmon resonance technique. Composite films of cellulose acetate containing calix[4]pyrrole has also been reported which has potential usage in packaging, storage and preservation. In nut shell, calix[4]pyrrole can be modified in a variety of ways to form versatile sensors which can be used in variety of ways in various areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chakrabarti, P.: Anion binding sites in protein structures. J. Mol. Biol. 234, 463–482 (1993)

    Article  CAS  Google Scholar 

  2. Park, C.H., Simmons, H.E.: Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc. 90, 2431–2432 (1968)

    Article  CAS  Google Scholar 

  3. Martinez-Manezm, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  Google Scholar 

  4. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T., Mackinnon, R.: X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    Article  CAS  Google Scholar 

  5. D’Souza, F., Zandler, M.E., Tagliatesta, P., Ou, Z., Shao, J., Caemelbecke, E.V., Kadish, K.M.: Electronic, spectral and electrochemical properties of (TPPBrx)Zn where TPPBrx is the dianion of β-brominated-pyrrole tetraphenylporphyrin and x varies from 0 to 8. Inorg. Chem. 37, 4567–4572 (1998)

    Article  Google Scholar 

  6. Harrison, R.M.: Pollution: Causes, Effects and Control. RSC, London (1983)

    Google Scholar 

  7. Baeyer, A.: Ueber ein condensationsproduct von pyrrol mit aceton. Ber. Dtsch. Chem. Ges. 19, 2184–2185 (1886)

    Article  Google Scholar 

  8. Chelintzev, V.V., Tronov, B.V.: Production of calix[4]pyrroles by the method of condensing acetone and pyrrole. J. Russ. Phys. Chem. Soc. 48, 105–106 (1916)

    CAS  Google Scholar 

  9. Rothemund, P., Gage, C.L.: Concerning the structure of “Acetonepyrrole”. J. Am. Chem. Soc. 77, 3340–3342 (1955)

    Article  CAS  Google Scholar 

  10. Chelintzev, V.V., Tronov, B.V.: Cyclehexyl phenyl ether and its isomerization to cyclohexylphenol. J. Russ. Phys. Chem. Soc. 48, 1197–1209 (1916)

    CAS  Google Scholar 

  11. Lee, C.H.: Versatilities of calix[4]pyrrole based anion receptors. Bull. Korean Chem. Soc. 32, 768–778 (2011)

    Article  CAS  Google Scholar 

  12. Wintergerst, M.P., Levitskaia, T.G., Moyer, B.A., Sessler, J.L., Delmau, L.H.: Calix[4]pyrrole as a new ion-pair receptor: cesium halide binding and liquid-liquid extraction. J. Am. Chem. Soc. 130, 4129–4139 (2008)

    Article  CAS  Google Scholar 

  13. Yoo, J., Jeoung, E., Lee, C.H.: Fluorophore-appended calix[4]pyrroles: conformationally flexible fluorometric chemosensors. Supramol. Chem. 21, 164–172 (2009)

    Article  CAS  Google Scholar 

  14. Namor, A., Abbas, I., Hammud, H.: A new calix[4]pyrrole derivative and its anion(fluoride)/cation(mercury and silver) recognition. J. Phys. Chem. B 111, 3098–3105 (2007)

    Article  Google Scholar 

  15. Gale, P.A., Twyman, L.J., Handlin, C.I., Sessler, J.A.: A colourimetric calix[4]pyrrole–4-nitrophenolate based anion sensor. Chem. Commun. 18, 1851–1852 (1999)

    Article  Google Scholar 

  16. Nielsen, K.A., Cho, W.S., Jeppesen, J.O., Lynch, V.M., Sessler, J.L.: Tetra-TTF calix[4]pyrrole: a rationally designed receptor for electron-deficient neutral guests. J. Am. Chem. Soc. 126, 16296–16297 (2004)

    Article  CAS  Google Scholar 

  17. Kim, D.S., Lynch, V.M., Nielsen, K.A., Johnsen, C., Jeppesen, J.O., Sessler, J.L.: A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal. Bioanal. Chem. 395, 393–400 (2009)

    Article  CAS  Google Scholar 

  18. Nishiyabu, R., Jr, P.: Anzenbacher, sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J. Am. Chem. Soc. 127, 8270–8271 (2005)

    Article  CAS  Google Scholar 

  19. Farinha, A.S.F., Tomé, A.C., Cavaleiro, J.A.S.: (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal: a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors. Tetrahedron Lett. 51, 2184–2187 (2010)

    Article  CAS  Google Scholar 

  20. Farinha, A.S.F., Tomé, A.C., Cavaleiro, J.A.S.: Synthesis of new calix[4]pyrrole derivatives via 1,3-dipolar cycloadditions. Tetrahedron 66, 7595–7599 (2010)

    Article  CAS  Google Scholar 

  21. Mahanta, S.P., Kumar, B.S., Panda, P.K.: Meso-diacylated calix[4]pyrrole: structural diversities and enhanced binding towards dihydrogenphosphate ion. Chem. Commun. 47, 4496–4498 (2011)

    Article  CAS  Google Scholar 

  22. Aydogan, A., Coady, D.J., Lynch, V.M., Akar, A., Marquez, M., Bielawski, C.W., Sessler, J.L.: Poly(methyl methacrylate)s with pendant calixpyrroles: polymeric extractants for halide anion salts. Chem. Commun. 1455–1457 (2008)

  23. Valente, N.I.P., Muteto, P.V., Farinha, A.S.F., Tomé, A.C., Oliveira, J.A.B.P., Gomes, M.T.S.R.: An acoustic wave sensor for the hydrophilic fluoride. Sensors Actuators B 157, 594–599 (2011)

    Article  CAS  Google Scholar 

  24. Gale, P.A., Sessler, J.L., Allen, W.E., Tvermoes, N.A., Lynch, V.: Calix[4]pyrroles: c-rim substitution and tunability of anion binding strength. Chem. Commun. 7, 665–666 (1997)

    Article  Google Scholar 

  25. Anzenbacher Jr, P., Try, A.C., Miyara, H., Jurisikova, K., Lynch, V.M., Marquez, M., Sessler, J.L.: Fluorinated calix[4]pyrrole and dipyrrolylquinoxaline. Neutral anion receptors with augmented affinites and enhanced selectivities. J. Am. Chem. Soc. 122, 10268–10272 (2000)

    Article  CAS  Google Scholar 

  26. Aydogan, A., Sessler, J.L., Akar, A., Lynch, V.: Calix[4]pyrroles with long alkyl chains: synthesis, characterization, and anion binding studies. Supramol. Chem. 20, 11–21 (2008)

    Article  CAS  Google Scholar 

  27. Valik, M., Král, V., Herdtweck, E., Schmidtchen, F.P.: Sulfoniumcalixpyrrole: the decoration of a calix[4]pyrrole host with positive charges boosts affinity and selectivity of anion binding in DMSO solvent. New J. Chem. 31, 703–710 (2007)

    Article  CAS  Google Scholar 

  28. Anzenbacher Jr, P., Jurisikova, K., Lynch, V.M., Gale, P.A., Sessler, J.L.: Calix[4]pyrroles containing deep cavities and fixed walls. Synthesis, structural studies and anion binding properties of the isomeric products derived from the condensation of p-hydroxyacetophenone and pyrrole. J. Am. Chem. Soc. 121, 11020–11021 (1999)

    Article  CAS  Google Scholar 

  29. Woods, C.J., Camiolo, S., Light, M.E., Coles, S.J., Hursthouse, M.B., King, M.A., Gale, P.A., Essex, J.W.: Fluoride-selective binding in a new deep cavity calix[4]pyrrole: experiment and theory. J. Am. Chem. Soc. 124, 8644–8652 (2002)

    Article  CAS  Google Scholar 

  30. Schumacher, A.L., Hill, J.P., Ariya, K., D’souza, F.: Highly effective electrochemical anion sensing based on oxoporphyrinogen. Electrochem. Comm. 9, 2751–2754 (2007)

    Article  CAS  Google Scholar 

  31. Jayswal, K.P., Patela, J.R.: Design, synthesis, characterization and complexation studies of novel vanadophiles: calix[4]pyrrole hydroxamic acids. Acta Chem. Solv. 55, 502–507 (2008)

    CAS  Google Scholar 

  32. Ballester, P., Ramírez, G.G.: From the cover: molecular recognition and self-assembly special feature: self-assembly of dimeric tetraurea calix[4]pyrrole capsules. PNAS 106, 10455–10459 (2009)

    Article  CAS  Google Scholar 

  33. Yang, W., Yin, Z., Wang, C.H., Huang, C., He, J., Zhu, X., Cheng, J.P.: New redox anion receptors based on calix[4]pyrrole bearing ferrocene amide. Tetrahedron 64, 9244–9252 (2008)

    Article  CAS  Google Scholar 

  34. Lui, K., Guo, Y., Xu, J., Shao, S.J., Jiang, S.X.: Synthesis of new 2,5-dimethyl pyrrole derivatives from acetonylacetone. Chinese Chem. Lett. 17, 387–390 (2006)

    Google Scholar 

  35. Garg, B., Bisht, T., Chauhan, S.M.S.: Electrostatic interaction between cationic calix[4]pyrroles and anionic porphyrins in water. J. Incl. Phenom. Macrocycl. Chem. 67, 241–246 (2010)

    Article  CAS  Google Scholar 

  36. Garg, B., Bisht, T., Chauhan, S.M.S.: Meso-functional calix[4]pyrrole: a solution phase study of anion directed self-assembly. J. Incl. Phenom. Macrocycl. Chem. 70, 249–255 (2011)

    Article  CAS  Google Scholar 

  37. Garg, B., Bisht, T., Chauhan, S.M.S.: Synthesis and anion binding properties of novel 3,12- and 3,7-bis(4#-nitrophenyl)-azo-calix[4]pyrrole receptors. New J. Chem. 34, 1251–1254 (2010)

    Article  CAS  Google Scholar 

  38. Yoo, J., Kim, M.S., Hong, S.J., Sessler, J.L., Lee, C.H.: Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines. J. Org. Chem. 74, 1065–1069 (2009)

    Article  CAS  Google Scholar 

  39. Miyaji, H., Hong, S.J., Jeong, S.D., Yoon, D.W., Na, H.K., Ham, H.J.S., Sessler, J.L., Lee, C.H.: Binol-Strapped calix[4]pyrrole as a model chirogenic receptor for the enantioselective recognition of carboxylate anions. Angewandte Chemie 46, 2508–2511 (2007)

    Article  CAS  Google Scholar 

  40. Lee, C.H., Lee, J.S., Na, H.K., Yoon, D.W., Miyaji, H., Cho, W.S., Sessler, J.L.: Cis- and trans-strapped calix[4]pyrroles bearing phthalamide linkers: Synthesis and anion-binding properties. J. Org. Chem. 70, 2067–2074 (2005)

    Article  CAS  Google Scholar 

  41. Jain, V.K., Mandalia, H.C., Gupte, H.S., Vyas, D.J.: Azocalix[4]pyrrole Amberlite XAD-2: New polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples. Talanta 79, 1331–1340 (2009)

    Article  CAS  Google Scholar 

  42. Kałędkowski, A., Trochimczuk, A.W.: Novel chelating resins containing calix[4]pyrroles: synthesis and sorptive properties. React. Funct. Polym. 66, 740–746 (2006)

    Article  Google Scholar 

  43. Kałędkowski, A., Trochimczuk, A.W.: Chelating resin containing hybrid calixpyrroles: new sorbent for noble metal cations. React. Funct. Polym. 66, 957–966 (2006)

    Article  Google Scholar 

  44. Park, J.S., Yoon, K.Y., Kim, D.S., Lynch, V.M., Bielawski, C.W., Johnston, K.P., Sessler, J.L.: Chemoresponsive alternating supramolecular copolymers created from heterocomplementary calix[4]pyrroles. PNAS 108, 20913–20917 (2011)

    Article  CAS  Google Scholar 

  45. Liu, K., He, L., He, X., Guo, Y., Shao, S., Jiang, S.: Calix[4]pyrrole–TCBQ assembly: a signal magnifier of TCBQ for colorimetric determining amino acids and amines. Tetrahedron Lett. 48, 4275–4279 (2007)

    Article  CAS  Google Scholar 

  46. Hong, S.J., Lee, C.H.: Nitrovinyl substituted calix[4]pyrrole as a unique, reaction-based chemosensor for cyanide anion. Tetrahedron Lett. 53, 3119–3122 (2012)

    Article  CAS  Google Scholar 

  47. Floriani, C.: The porphyrinogen–porphyhrin relationship: the discovery of artificial porphyrins. Chem. Commun. 1257–1263 (1996)

  48. von Maltzan, B.: Synthesis of 2,3,7,8,12,13,17,18-octamethylporphyrinogen in almost quantitative yield. Angew. Chem. Int. Ed. Engl. 21, 785–786 (1982)

    Article  Google Scholar 

  49. Gale, P.A., Sessler, J.L., Kral, V., Lynch, V.: Calix[4]pyrroles: old yet new anion binding agents. J. Am. Chem. Soc. 118, 5140–5141 (1996)

    Article  CAS  Google Scholar 

  50. Sessler, J.L., Andrievsky, A., Gale, P.A., Lynch, V.: Anion binding: self-assembly of polypyrrolic macrocycles. Angewandte Chemie 35, 2782–2785 (1996)

    Article  CAS  Google Scholar 

  51. Allen, W.E., Gale, P.A., Brown, C.T., Lynch, V.M., Sessler, J.L.: Binding of neutral substrates by calix[4]pyrroles. J. Am. Chem Soc. 118, 12471–12472 (1996)

    Article  CAS  Google Scholar 

  52. Sessler, J.L., Gross, D.E., Cho, W.S., Lynch, V.M., Schmidtchen, F.P., Bates, G.W., Light, M.E., Gale, P.A.: Calix[4]pyrrole as a chloride anion receptor: solvent and counter-cation effects. J. Am. Chem. Soc. 128, 12281–12288 (2006)

    Article  CAS  Google Scholar 

  53. Danil de Namor, A.F., Abbas, I., Hammud, H.H.: Anion complexation by calix[3]thieno[1]pyrrole: the medium effect. J. Phys. Chem. B 110, 2142 (2006)

    Article  CAS  Google Scholar 

  54. Won, J., Kang, K.Y., Chang, S.K., Kim, C.K.: Anion complexation by calix[4]pyrrole in solid polymer electrolytes. Macromol. Res. 14, 404–407 (2006)

    Article  CAS  Google Scholar 

  55. Conoci, S., Palumbo, M., Piagnataro, B., Rella, R., Valli, L., Vasapollo, G.: Optical recognition of organic vapours through ultrathin calix[4]pyrrole films. Colloids Surfaces A 198–200, 869–873 (2002)

    Article  Google Scholar 

  56. Sessler, J.L., An, D., Cho, W.S., Lynch, V., Marquez, M.: Calix[4]bipyrrole—a big, flexible, yet effective chloride-selective anion receptor. Chem. Commun. 540–542 (2005)

  57. Valente, A.J.M., Jimenez, A., Simoes, A.C., Burrows, H.D., Polishchuk, A.Y., Lobo, V.M.M.: Transport of solutes through calix[4]pyrrole-containing cellulose acetate films. Eur. Polym. J. 43, 2433–2442 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Islamic Azad University (Shahreza branch) and Iran Nanotechnology Initiative Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobra Pourabdollah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtari, B., Pourabdollah, K. Analytical applications of nano-baskets of calix[4]pyrroles. J Incl Phenom Macrocycl Chem 77, 23–31 (2013). https://doi.org/10.1007/s10847-012-0284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0284-8

Keywords

Navigation