Analytical applications of nano-baskets of calix[4]pyrroles

  • Bahram Mokhtari
  • Kobra PourabdollahEmail author
Review Article


Calix[4]pyrrole is one such class which holds a great promise in the fields of sensors and their unique behavior as sensors owes to its structural flexibility. Anion binding ability of calix[4]pyrrole has been modified in a variety of ways. Introduction of electron releasing and electron withdrawing groups at the meso position or at β-pyrrolic positions leads to calix[4]pyrrole with deep cavities and fixed walls which shows increased selectivity and modified binding effects. Strapping of calix[4]pyrrole is another way to modify its structural behavior which is responsible for its binding behavior. Choice of strap could play a profound role not only in increasing the intrinsic anion binding affinity of calix[4] pyrrole, but also in modulating the receptor anion stoichiometry, thereby modifying potentially the inherent anion binding selectivity. Calix[n]pyrroles with extended cavities have also been synthesized. Such as calix[3]bipyrrole binds bromide substantially with high affinity than calix[4]pyrrole. Calix[4]pyrrole has also been used to produce anion sensors that can report the presence of anion by means of a color change. The medium effect on the complexation of calix[4]pyrrole and anion has been investigated in various solvents. Calix[4]pyrrole has also been used to increase the ionic conductivity of solid polymer electrolyte by anion complexation of the metal salt. Calix[4]pyrrole has been used to obtain optical sensors using surface plasmon resonance technique. Composite films of cellulose acetate containing calix[4]pyrrole has also been reported which has potential usage in packaging, storage and preservation. In nut shell, calix[4]pyrrole can be modified in a variety of ways to form versatile sensors which can be used in variety of ways in various areas.


Nano-basket Calix[4]pyrroles Ion recognition Hydrogen bonding Anion binding 



This work was supported by Islamic Azad University (Shahreza branch) and Iran Nanotechnology Initiative Council.


  1. 1.
    Chakrabarti, P.: Anion binding sites in protein structures. J. Mol. Biol. 234, 463–482 (1993)CrossRefGoogle Scholar
  2. 2.
    Park, C.H., Simmons, H.E.: Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc. 90, 2431–2432 (1968)CrossRefGoogle Scholar
  3. 3.
    Martinez-Manezm, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)CrossRefGoogle Scholar
  4. 4.
    Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T., Mackinnon, R.: X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)CrossRefGoogle Scholar
  5. 5.
    D’Souza, F., Zandler, M.E., Tagliatesta, P., Ou, Z., Shao, J., Caemelbecke, E.V., Kadish, K.M.: Electronic, spectral and electrochemical properties of (TPPBrx)Zn where TPPBrx is the dianion of β-brominated-pyrrole tetraphenylporphyrin and x varies from 0 to 8. Inorg. Chem. 37, 4567–4572 (1998)CrossRefGoogle Scholar
  6. 6.
    Harrison, R.M.: Pollution: Causes, Effects and Control. RSC, London (1983)Google Scholar
  7. 7.
    Baeyer, A.: Ueber ein condensationsproduct von pyrrol mit aceton. Ber. Dtsch. Chem. Ges. 19, 2184–2185 (1886)CrossRefGoogle Scholar
  8. 8.
    Chelintzev, V.V., Tronov, B.V.: Production of calix[4]pyrroles by the method of condensing acetone and pyrrole. J. Russ. Phys. Chem. Soc. 48, 105–106 (1916)Google Scholar
  9. 9.
    Rothemund, P., Gage, C.L.: Concerning the structure of “Acetonepyrrole”. J. Am. Chem. Soc. 77, 3340–3342 (1955)CrossRefGoogle Scholar
  10. 10.
    Chelintzev, V.V., Tronov, B.V.: Cyclehexyl phenyl ether and its isomerization to cyclohexylphenol. J. Russ. Phys. Chem. Soc. 48, 1197–1209 (1916)Google Scholar
  11. 11.
    Lee, C.H.: Versatilities of calix[4]pyrrole based anion receptors. Bull. Korean Chem. Soc. 32, 768–778 (2011)CrossRefGoogle Scholar
  12. 12.
    Wintergerst, M.P., Levitskaia, T.G., Moyer, B.A., Sessler, J.L., Delmau, L.H.: Calix[4]pyrrole as a new ion-pair receptor: cesium halide binding and liquid-liquid extraction. J. Am. Chem. Soc. 130, 4129–4139 (2008)CrossRefGoogle Scholar
  13. 13.
    Yoo, J., Jeoung, E., Lee, C.H.: Fluorophore-appended calix[4]pyrroles: conformationally flexible fluorometric chemosensors. Supramol. Chem. 21, 164–172 (2009)CrossRefGoogle Scholar
  14. 14.
    Namor, A., Abbas, I., Hammud, H.: A new calix[4]pyrrole derivative and its anion(fluoride)/cation(mercury and silver) recognition. J. Phys. Chem. B 111, 3098–3105 (2007)CrossRefGoogle Scholar
  15. 15.
    Gale, P.A., Twyman, L.J., Handlin, C.I., Sessler, J.A.: A colourimetric calix[4]pyrrole–4-nitrophenolate based anion sensor. Chem. Commun. 18, 1851–1852 (1999)CrossRefGoogle Scholar
  16. 16.
    Nielsen, K.A., Cho, W.S., Jeppesen, J.O., Lynch, V.M., Sessler, J.L.: Tetra-TTF calix[4]pyrrole: a rationally designed receptor for electron-deficient neutral guests. J. Am. Chem. Soc. 126, 16296–16297 (2004)CrossRefGoogle Scholar
  17. 17.
    Kim, D.S., Lynch, V.M., Nielsen, K.A., Johnsen, C., Jeppesen, J.O., Sessler, J.L.: A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal. Bioanal. Chem. 395, 393–400 (2009)CrossRefGoogle Scholar
  18. 18.
    Nishiyabu, R., Jr, P.: Anzenbacher, sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J. Am. Chem. Soc. 127, 8270–8271 (2005)CrossRefGoogle Scholar
  19. 19.
    Farinha, A.S.F., Tomé, A.C., Cavaleiro, J.A.S.: (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal: a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors. Tetrahedron Lett. 51, 2184–2187 (2010)CrossRefGoogle Scholar
  20. 20.
    Farinha, A.S.F., Tomé, A.C., Cavaleiro, J.A.S.: Synthesis of new calix[4]pyrrole derivatives via 1,3-dipolar cycloadditions. Tetrahedron 66, 7595–7599 (2010)CrossRefGoogle Scholar
  21. 21.
    Mahanta, S.P., Kumar, B.S., Panda, P.K.: Meso-diacylated calix[4]pyrrole: structural diversities and enhanced binding towards dihydrogenphosphate ion. Chem. Commun. 47, 4496–4498 (2011)CrossRefGoogle Scholar
  22. 22.
    Aydogan, A., Coady, D.J., Lynch, V.M., Akar, A., Marquez, M., Bielawski, C.W., Sessler, J.L.: Poly(methyl methacrylate)s with pendant calixpyrroles: polymeric extractants for halide anion salts. Chem. Commun. 1455–1457 (2008)Google Scholar
  23. 23.
    Valente, N.I.P., Muteto, P.V., Farinha, A.S.F., Tomé, A.C., Oliveira, J.A.B.P., Gomes, M.T.S.R.: An acoustic wave sensor for the hydrophilic fluoride. Sensors Actuators B 157, 594–599 (2011)CrossRefGoogle Scholar
  24. 24.
    Gale, P.A., Sessler, J.L., Allen, W.E., Tvermoes, N.A., Lynch, V.: Calix[4]pyrroles: c-rim substitution and tunability of anion binding strength. Chem. Commun. 7, 665–666 (1997)CrossRefGoogle Scholar
  25. 25.
    Anzenbacher Jr, P., Try, A.C., Miyara, H., Jurisikova, K., Lynch, V.M., Marquez, M., Sessler, J.L.: Fluorinated calix[4]pyrrole and dipyrrolylquinoxaline. Neutral anion receptors with augmented affinites and enhanced selectivities. J. Am. Chem. Soc. 122, 10268–10272 (2000)CrossRefGoogle Scholar
  26. 26.
    Aydogan, A., Sessler, J.L., Akar, A., Lynch, V.: Calix[4]pyrroles with long alkyl chains: synthesis, characterization, and anion binding studies. Supramol. Chem. 20, 11–21 (2008)CrossRefGoogle Scholar
  27. 27.
    Valik, M., Král, V., Herdtweck, E., Schmidtchen, F.P.: Sulfoniumcalixpyrrole: the decoration of a calix[4]pyrrole host with positive charges boosts affinity and selectivity of anion binding in DMSO solvent. New J. Chem. 31, 703–710 (2007)CrossRefGoogle Scholar
  28. 28.
    Anzenbacher Jr, P., Jurisikova, K., Lynch, V.M., Gale, P.A., Sessler, J.L.: Calix[4]pyrroles containing deep cavities and fixed walls. Synthesis, structural studies and anion binding properties of the isomeric products derived from the condensation of p-hydroxyacetophenone and pyrrole. J. Am. Chem. Soc. 121, 11020–11021 (1999)CrossRefGoogle Scholar
  29. 29.
    Woods, C.J., Camiolo, S., Light, M.E., Coles, S.J., Hursthouse, M.B., King, M.A., Gale, P.A., Essex, J.W.: Fluoride-selective binding in a new deep cavity calix[4]pyrrole: experiment and theory. J. Am. Chem. Soc. 124, 8644–8652 (2002)CrossRefGoogle Scholar
  30. 30.
    Schumacher, A.L., Hill, J.P., Ariya, K., D’souza, F.: Highly effective electrochemical anion sensing based on oxoporphyrinogen. Electrochem. Comm. 9, 2751–2754 (2007)CrossRefGoogle Scholar
  31. 31.
    Jayswal, K.P., Patela, J.R.: Design, synthesis, characterization and complexation studies of novel vanadophiles: calix[4]pyrrole hydroxamic acids. Acta Chem. Solv. 55, 502–507 (2008)Google Scholar
  32. 32.
    Ballester, P., Ramírez, G.G.: From the cover: molecular recognition and self-assembly special feature: self-assembly of dimeric tetraurea calix[4]pyrrole capsules. PNAS 106, 10455–10459 (2009)CrossRefGoogle Scholar
  33. 33.
    Yang, W., Yin, Z., Wang, C.H., Huang, C., He, J., Zhu, X., Cheng, J.P.: New redox anion receptors based on calix[4]pyrrole bearing ferrocene amide. Tetrahedron 64, 9244–9252 (2008)CrossRefGoogle Scholar
  34. 34.
    Lui, K., Guo, Y., Xu, J., Shao, S.J., Jiang, S.X.: Synthesis of new 2,5-dimethyl pyrrole derivatives from acetonylacetone. Chinese Chem. Lett. 17, 387–390 (2006)Google Scholar
  35. 35.
    Garg, B., Bisht, T., Chauhan, S.M.S.: Electrostatic interaction between cationic calix[4]pyrroles and anionic porphyrins in water. J. Incl. Phenom. Macrocycl. Chem. 67, 241–246 (2010)CrossRefGoogle Scholar
  36. 36.
    Garg, B., Bisht, T., Chauhan, S.M.S.: Meso-functional calix[4]pyrrole: a solution phase study of anion directed self-assembly. J. Incl. Phenom. Macrocycl. Chem. 70, 249–255 (2011)CrossRefGoogle Scholar
  37. 37.
    Garg, B., Bisht, T., Chauhan, S.M.S.: Synthesis and anion binding properties of novel 3,12- and 3,7-bis(4#-nitrophenyl)-azo-calix[4]pyrrole receptors. New J. Chem. 34, 1251–1254 (2010)CrossRefGoogle Scholar
  38. 38.
    Yoo, J., Kim, M.S., Hong, S.J., Sessler, J.L., Lee, C.H.: Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines. J. Org. Chem. 74, 1065–1069 (2009)CrossRefGoogle Scholar
  39. 39.
    Miyaji, H., Hong, S.J., Jeong, S.D., Yoon, D.W., Na, H.K., Ham, H.J.S., Sessler, J.L., Lee, C.H.: Binol-Strapped calix[4]pyrrole as a model chirogenic receptor for the enantioselective recognition of carboxylate anions. Angewandte Chemie 46, 2508–2511 (2007)CrossRefGoogle Scholar
  40. 40.
    Lee, C.H., Lee, J.S., Na, H.K., Yoon, D.W., Miyaji, H., Cho, W.S., Sessler, J.L.: Cis- and trans-strapped calix[4]pyrroles bearing phthalamide linkers: Synthesis and anion-binding properties. J. Org. Chem. 70, 2067–2074 (2005)CrossRefGoogle Scholar
  41. 41.
    Jain, V.K., Mandalia, H.C., Gupte, H.S., Vyas, D.J.: Azocalix[4]pyrrole Amberlite XAD-2: New polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples. Talanta 79, 1331–1340 (2009)CrossRefGoogle Scholar
  42. 42.
    Kałędkowski, A., Trochimczuk, A.W.: Novel chelating resins containing calix[4]pyrroles: synthesis and sorptive properties. React. Funct. Polym. 66, 740–746 (2006)CrossRefGoogle Scholar
  43. 43.
    Kałędkowski, A., Trochimczuk, A.W.: Chelating resin containing hybrid calixpyrroles: new sorbent for noble metal cations. React. Funct. Polym. 66, 957–966 (2006)CrossRefGoogle Scholar
  44. 44.
    Park, J.S., Yoon, K.Y., Kim, D.S., Lynch, V.M., Bielawski, C.W., Johnston, K.P., Sessler, J.L.: Chemoresponsive alternating supramolecular copolymers created from heterocomplementary calix[4]pyrroles. PNAS 108, 20913–20917 (2011)CrossRefGoogle Scholar
  45. 45.
    Liu, K., He, L., He, X., Guo, Y., Shao, S., Jiang, S.: Calix[4]pyrrole–TCBQ assembly: a signal magnifier of TCBQ for colorimetric determining amino acids and amines. Tetrahedron Lett. 48, 4275–4279 (2007)CrossRefGoogle Scholar
  46. 46.
    Hong, S.J., Lee, C.H.: Nitrovinyl substituted calix[4]pyrrole as a unique, reaction-based chemosensor for cyanide anion. Tetrahedron Lett. 53, 3119–3122 (2012)CrossRefGoogle Scholar
  47. 47.
    Floriani, C.: The porphyrinogen–porphyhrin relationship: the discovery of artificial porphyrins. Chem. Commun. 1257–1263 (1996)Google Scholar
  48. 48.
    von Maltzan, B.: Synthesis of 2,3,7,8,12,13,17,18-octamethylporphyrinogen in almost quantitative yield. Angew. Chem. Int. Ed. Engl. 21, 785–786 (1982)CrossRefGoogle Scholar
  49. 49.
    Gale, P.A., Sessler, J.L., Kral, V., Lynch, V.: Calix[4]pyrroles: old yet new anion binding agents. J. Am. Chem. Soc. 118, 5140–5141 (1996)CrossRefGoogle Scholar
  50. 50.
    Sessler, J.L., Andrievsky, A., Gale, P.A., Lynch, V.: Anion binding: self-assembly of polypyrrolic macrocycles. Angewandte Chemie 35, 2782–2785 (1996)CrossRefGoogle Scholar
  51. 51.
    Allen, W.E., Gale, P.A., Brown, C.T., Lynch, V.M., Sessler, J.L.: Binding of neutral substrates by calix[4]pyrroles. J. Am. Chem Soc. 118, 12471–12472 (1996)CrossRefGoogle Scholar
  52. 52.
    Sessler, J.L., Gross, D.E., Cho, W.S., Lynch, V.M., Schmidtchen, F.P., Bates, G.W., Light, M.E., Gale, P.A.: Calix[4]pyrrole as a chloride anion receptor: solvent and counter-cation effects. J. Am. Chem. Soc. 128, 12281–12288 (2006)CrossRefGoogle Scholar
  53. 53.
    Danil de Namor, A.F., Abbas, I., Hammud, H.H.: Anion complexation by calix[3]thieno[1]pyrrole: the medium effect. J. Phys. Chem. B 110, 2142 (2006)CrossRefGoogle Scholar
  54. 54.
    Won, J., Kang, K.Y., Chang, S.K., Kim, C.K.: Anion complexation by calix[4]pyrrole in solid polymer electrolytes. Macromol. Res. 14, 404–407 (2006)CrossRefGoogle Scholar
  55. 55.
    Conoci, S., Palumbo, M., Piagnataro, B., Rella, R., Valli, L., Vasapollo, G.: Optical recognition of organic vapours through ultrathin calix[4]pyrrole films. Colloids Surfaces A 198–200, 869–873 (2002)CrossRefGoogle Scholar
  56. 56.
    Sessler, J.L., An, D., Cho, W.S., Lynch, V., Marquez, M.: Calix[4]bipyrrole—a big, flexible, yet effective chloride-selective anion receptor. Chem. Commun. 540–542 (2005)Google Scholar
  57. 57.
    Valente, A.J.M., Jimenez, A., Simoes, A.C., Burrows, H.D., Polishchuk, A.Y., Lobo, V.M.M.: Transport of solutes through calix[4]pyrrole-containing cellulose acetate films. Eur. Polym. J. 43, 2433–2442 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Razi Chemistry Research Center (RCRC)Shahreza Branch, Islamic Azad UniversityShahrezaIran

Personalised recommendations