Insertion of fluorophore dyes between Cloisite Na+ layered for preparation of novel organoclays

  • Shadpour MallakpourEmail author
  • Mohammad Dinari
  • Hassan Hadadzadeh
Original Article


The aim of this study was to obtain novel photo-functional organomontmorillonites from the intercalation reaction of Cloisite Na+ and fluorescent dyes of auramine O, and safranin T in an aqueous solution. The insertion of surfactants in the interlamellar space of nanoclay was followed by Fourier transform infrared spectroscopy and X-ray measurements. An X-ray diffraction analysis established that incorporation of the organic dye cations into the Cloisite Na+ expands remarkably the mineral interplanar distances from 1.17 to 1.83–1.97 nm. Field emission scanning electron microscopy was used to study the morphology of the synthesized organoclays. The thermal behavior of the novel hybrid materials was investigated by thermogravimetric analysis and the results show that the organo modified clays verify stepwise decomposition corresponding to initial weight loss from residual water desorption, followed by decomposition of the fluorescent dyes and the dehydroxylation of structural water of the clay layers. Fluorescence properties of the cationic dyes, auramine O, and safranin T incorporated in the clay have significant differences from their behavior in organic solvents and water and the results show that both dyes exhibit a significant fluorescence emission at room temperature when adsorbed in clay.


Montmorillonite Cationic surfactant Organoclays Fluorophore dyes X-ray diffraction 



The partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan is gratefully acknowledged. Also, thankfully acknowledged of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellence in Sensors and Green Chemistry (IUT) for partial support.

Supplementary material

10847_2012_267_MOESM1_ESM.xls (46 kb)
Supplementary material 1 (XLS 46 kb)
10847_2012_267_MOESM2_ESM.xls (34 kb)
Supplementary material 2 (XLS 33 kb)
10847_2012_267_MOESM3_ESM.xls (50 kb)
Supplementary material 3 (XLS 50 kb)
10847_2012_267_MOESM4_ESM.xls (48 kb)
Supplementary material 4 (XLS 48 kb)
10847_2012_267_MOESM5_ESM.xls (34 kb)
Supplementary material 5 (XLS 35 kb)
10847_2012_267_MOESM6_ESM.xls (49 kb)
Supplementary material 6 (XLS 49 kb)


  1. 1.
    Utracki, L.A.: Clay-Containing Polymeric Nanocomposites, vol. 1. Rapra Technology Limited, Shawbury (2004)Google Scholar
  2. 2.
    Panyala, N.R., Pena-Mendez, E.M., Havel, J.: Silver or silver nanoparticles: a hazardous threat to the environment and human health. J. Appl. Biomed. 6, 117–129 (2008)Google Scholar
  3. 3.
    Zhou, H., Zou, L., Chen, X., Yang, C., Inokuchi, M., Qin, J.: An inorganic-organic intercalated nanocomposite, BEDT-TTF into layered MnPS3. J. Incl. Phenom. Macrocycl. Chem. 62, 293–296 (2008)CrossRefGoogle Scholar
  4. 4.
    Ruiz-Hitzky, E., Van Meerbeeck, A.: Clays in industry. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of Clay Science. Elsevier, Amsterdam (2006)Google Scholar
  5. 5.
    Tiwari, R.R., Khilar, K.C., Natarajan, U.: Synthesis and characterization of novel organo-montmorillonites. Appl. Clay Sci. 38, 203–208 (2008)CrossRefGoogle Scholar
  6. 6.
    Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 29, 133–145 (2006)CrossRefGoogle Scholar
  7. 7.
    Qian, Z., Hu, G., Zhang, S., Yang, M.: Preparation and characterization of montmorillonite-silica nanocomposites: a sol-gel approach to modifying clay surfaces. Phys. B 403, 3231–3238 (2008)CrossRefGoogle Scholar
  8. 8.
    Mallakpou, S., Dinari, M.: Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+. Appl. Clay Sci. 51, 353–359 (2011)CrossRefGoogle Scholar
  9. 9.
    Hedley, C.B., Yuan, G., Theng, B.K.G.: Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl. Clay Sci. 35, 180–188 (2007)CrossRefGoogle Scholar
  10. 10.
    Katti, D.R., Ghosh, P., Schmidt, S., Katti, K.S.: Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids. Biomacromolecules 6, 3276–3282 (2005)CrossRefGoogle Scholar
  11. 11.
    Dias, P.M., De Faria, D.L.A., Constantino, V.R.L.: Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J. Incl. Phenom. Macrocycl. Chem. 38, 251–266 (2000)CrossRefGoogle Scholar
  12. 12.
    He, H., Yang, D., Yuan, P., Shen, W., Frost, R.L.: A novel organoclay with antibacterial activity prepared from montmorillonite and chlorhexidini acetas. J. Colloid Interface Sci. 297, 235–243 (2006)CrossRefGoogle Scholar
  13. 13.
    Esposito, A., Raccurt, O., Charmeau, J.Y., Duchet-Rumeau, J.: Functionalization of Cloisite 30B with fluorescent dyes. Appl. Clay Sci. 50, 525–532 (2010)CrossRefGoogle Scholar
  14. 14.
    Jiang, J.Q., Cooper, C., Ouki, S.: Comparison of modified montmorillonite adsorbents, part I: preparation, characterization and phenol adsorption. Chemosphere 47, 711–716 (2002)CrossRefGoogle Scholar
  15. 15.
    Wu, P.X., Liao, Z.W., Zhang, H.F., Guo, J.G.: Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water. Environ. Int. 26, 401–407 (2001)CrossRefGoogle Scholar
  16. 16.
    Li, F., Rosen, M.J.: Adsorption of gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay. J. Colloid Interface Sci. 224, 265–271 (2000)CrossRefGoogle Scholar
  17. 17.
    Reisfeld, R.: Fluorescent dyes in sol-gel glasses. J. Fluoresc. 12, 317–325 (2002)CrossRefGoogle Scholar
  18. 18.
    Gehlen, M.H., Pereira, R.V., Gallas, M.R., Costa, T.M.H., Stefani, V.: Time-resolved fluorescence spectroscopy of cationic dyes incorporated in silica matrix by high pressure compaction. J. Photochem. Photobiol. A 181, 147–151 (2006)CrossRefGoogle Scholar
  19. 19.
    Vieira Ferreira, L.F., Branco, T.J.F., Botelho do Rego, A.M.: Luminescence quantum yield determination for molecules adsorbed onto solid powdered particles. ChemPhysChem 5, 1848–1854 (2004)CrossRefGoogle Scholar
  20. 20.
    Weiss, A.M., Yariv, E., Reisfeld, R.: Photostability of luminescent dyes in solid-state dye lasers. Opt. Mater. 24, 31–34 (2003)CrossRefGoogle Scholar
  21. 21.
    Sasai, R., Iyi, N., Fujita, T., Arbeloa, F.L., Martınez, V.M., Takagi, K., Itoh, H.: Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir 20, 4715–4719 (2004)CrossRefGoogle Scholar
  22. 22.
    Pereira, R.V., Gehlen, M.H.: Picosecond fluorescence dynamics of auramine with a long aliphatic chain. Chem. Phys. Lett. 417, 425–429 (2006)CrossRefGoogle Scholar
  23. 23.
    Martelli, A., Campart, G.B., Canonero, R., Carrozzino, R., Mattioli, F., Robbiano, L., Cavanna, M.: Evaluation of auramine genotoxicity in primary rat and human hepatocytes and in the intact rat. Mutat. Res. 414, 37–47 (1998)CrossRefGoogle Scholar
  24. 24.
    Gaikwad, R.W., Kinldy, S.A.M.: Studies on auramine dye adsorption on psidium guava leaves. Korean J. Chem. Eng. 26, 102–107 (2009)CrossRefGoogle Scholar
  25. 25.
    Mall, I.D., Srivastava, V.C., Agarwal, N.K.: Adsorptive removal of auramine-O: kinetic and equilibrium study. J. Hazard. Mater. 143, 386–395 (2007)CrossRefGoogle Scholar
  26. 26.
    Changenet, P., Zhang, H., van der Meer, M.J., Glasbeek, M., Plaza, P., Martin, M.M.: Fluorescence quenching of auramine in fluid solutions: a femtosecond spectroscopy study. J. Fluoresc. 10, 155–160 (2000)CrossRefGoogle Scholar
  27. 27.
    Giasbeek, M., Zhang, H., van der Meer, M.J.: Femtosecond studies of twisting dynamics of auramine in solution. J. Mol. Liq. 86, 123–126 (2000)CrossRefGoogle Scholar
  28. 28.
    Filik, H., Giray, D., Ceylan, B., Apak, R.: A novel fiber optic spectrophotometric determination of nitrite using safranin O and cloud point extraction. Talanta 85, 1818–1824 (2011)CrossRefGoogle Scholar
  29. 29.
    Gupta, V.K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S.: Adsorption of safranin-T from wastewater using waste materials—activated carbon and activated rice husks. J. Colloid Interface Sci. 303, 80–86 (2006)CrossRefGoogle Scholar
  30. 30.
    Drabik, M., Touskova, J., Hanus, J., Kobayashi, H., Biederman, H.: Properties of composite films of titania nanofibers and safranin O dye. Synth. Met. 160, 2564–2572 (2010)CrossRefGoogle Scholar
  31. 31.
    Mutsuzaki, H., Sakane, M., Nakajima, H., Ito, A., Hattori, S., Miyanaga, Y., Ochiai, N., Tanaka, J.: Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J. Biomed. Mater. Res. 70A, 319–327 (2004)CrossRefGoogle Scholar
  32. 32.
    Shah, K.M.: Handbook of Synthetic Dyes and Pigments, 2nd edn. Multitech Publishing Co., India (1998)Google Scholar
  33. 33.
    Mallakpou, S., Dinari, M.: Preparation, characterization, and thermal properties of organoclay hybrids based on trifunctional natural amino acids. J Therm. Anal. Calorim. (2012). doi: 10.1007/s10973-012-2375-6
  34. 34.
    Zhou, L., Chena, H., Jiang, X., Lu, F., Zhou, Y., Yin, W., Ji, X.: Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants. J. Colloid Interface Sci. 332, 16–21 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Shadpour Mallakpour
    • 1
    • 2
    Email author
  • Mohammad Dinari
    • 1
  • Hassan Hadadzadeh
    • 3
  1. 1.Department of Chemistry, Organic Polymer Chemistry Research LaboratoryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  3. 3.Inorganic Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations